cutlass/examples/13_fused_two_gemms/threadblock/default_b2b_mma.h

290 lines
13 KiB
C
Raw Normal View History

/***************************************************************************************************
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/arch/arch.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
#include "cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
#include "cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h"
#include "threadblock/b2b_mma_pipelined.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace threadblock {
////////////////////////////////////////////////////////////////////////////////
template <
/// Element type for A matrix operand
typename ElementA_,
/// Layout type for A matrix operand
typename LayoutA_,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB_,
/// Layout type for B matrix operand
typename LayoutB_,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for internal accumulation
typename ElementAccumulator_,
/// Layout type for C and D matrix operands
typename LayoutC_,
/// Operator class tag
typename OperatorClass_,
/// Tag indicating architecture to tune for
typename ArchTag_,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0_,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1_,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0_,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1_,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape_,
/// Number of stages used in the pipelined mainloop
int Stages,
/// Operation perfomed by GEMM
typename Operator,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Store the accumulators in row major or column major. Row major is used
/// when output layout is interleaved.
bool AccumulatorsInRowMajor = false>
struct DefaultB2bMma;
////////////////////////////////////////////////////////////////////////////////
/// Specialization for row-major output
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Tag indicating architecture to tune for
typename OperatorClass,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape,
/// Operation performed by GEMM
typename Operator,
/// Epilogue output operator
typename EpilogueOutputOp>
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
kAlignmentB, ElementAccumulator, layout::RowMajor,
OperatorClass, ArchTag,
ThreadblockShape0, ThreadblockShape1,
WarpShape0, WarpShape1,
InstructionShape, 2, Operator, EpilogueOutputOp, false> {
// Define the MmaCore components
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator, layout::RowMajor,
OperatorClass, 2, Operator>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator, layout::RowMajor,
OperatorClass, 2, Operator>;
// Define iterators over tiles from the A operand
using IteratorA0 =
cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore0::Shape::kM, MmaCore0::Shape::kK>,
ElementA, LayoutA, 1, typename MmaCore0::IteratorThreadMapA, kAlignmentA>;
// Define iterators over tiles from the B operand
using IteratorB0 =
cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore0::Shape::kK, MmaCore0::Shape::kN>,
ElementB, LayoutB, 0, typename MmaCore0::IteratorThreadMapB, kAlignmentB>;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::ColumnMajor;
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout, InstructionShape, EpilogueOutputOp, true>;
// Define iterators over tiles from the B operand
using IteratorB1 =
cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore1::Shape::kK, MmaCore1::Shape::kN>,
ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB>;
// Define the threadblock-scoped pipelined matrix multiply
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelined<
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
IteratorB0, typename MmaCore0::SmemIteratorB,
typename MmaCore1::Shape, FragmentIteratorA1,
IteratorB1, typename MmaCore1::SmemIteratorB,
ElementAccumulator, layout::RowMajor,
EpilogueOutputOp,
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy>;
};
////////////////////////////////////////////////////////////////////////////////
/// Specialization for column-major-interleaved output
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Access granularity of A matrix in units of elements
int kAlignmentA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Access granularity of B matrix in units of elements
int kAlignmentB,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Tag indicating architecture to tune for
typename OperatorClass,
/// Tag indicating architecture to tune for
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape0,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape1,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape0,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape1,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape,
/// Operation performed by GEMM
typename Operator,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Number of Interleaved K
int InterleavedK>
struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB,
kAlignmentB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, ArchTag,
ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1,
InstructionShape, 2, Operator, EpilogueOutputOp, true> {
// Define the MmaCore components
using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, 2, Operator,
true>;
using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA,
ElementB, LayoutB, ElementAccumulator,
layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, 2, Operator,
true>;
static_assert(kAlignmentA == 128 / sizeof_bits<ElementA>::value,
"Alignment must match thread data map's vector length");
static_assert(kAlignmentB ==128 / sizeof_bits<ElementB>::value,
"Alignment must match thread data map's vector length");
// Define iterators over tiles from the A operand
using IteratorA0 = cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore0::Shape::kM, MmaCore0::Shape::kK>, ElementA,
LayoutA, 1, typename MmaCore0::IteratorThreadMapA>;
// Define iterators over tiles from the B operand
using IteratorB0 = cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore0::Shape::kK, MmaCore0::Shape::kN>, ElementB,
LayoutB, 0, typename MmaCore0::IteratorThreadMapB>;
// Use fragment iterator for A operand
using AccumulatorLayout = cutlass::layout::RowMajor; //AccumulatorsInRowMajor = true
using FragmentIteratorA1 =
cutlass::gemm::warp::MmaTensorOpFragmentIterator<
cutlass::MatrixShape<MmaCore1::WarpShape::kM, MmaCore1::InstructionShape::kK>, //warp shape
cutlass::MatrixShape<MmaCore0::WarpShape::kM, MmaCore0::WarpShape::kN>, //accumulator shape
MmaCore1::Shape::kK, //kBlocksColumn
ElementAccumulator, ElementA, AccumulatorLayout,
InstructionShape, EpilogueOutputOp, true /*only handle beta=0 for 1st Gemm epilogue*/>;
// Define iterators over tiles from the B operand
using IteratorB1 =
cutlass::transform::threadblock::PredicatedTileIterator<
cutlass::MatrixShape<MmaCore1::Shape::kK, MmaCore1::Shape::kN>,
ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB>;
// Define the threadblock-scoped pipelined matrix multiply
using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelined<
typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA,
IteratorB0, typename MmaCore0::SmemIteratorB,
typename MmaCore1::Shape, FragmentIteratorA1,
IteratorB1, typename MmaCore1::SmemIteratorB,
ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>,
EpilogueOutputOp,
typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy>;
};
////////////////////////////////////////////////////////////////////////////////
} // namespace threadblock
} // namespace gemm
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////