2020-11-20 13:25:25 +08:00
|
|
|
/***************************************************************************************************
|
2023-01-21 05:32:57 +08:00
|
|
|
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2022-04-24 03:02:38 +08:00
|
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
2020-11-20 13:25:25 +08:00
|
|
|
*
|
2022-04-24 03:02:38 +08:00
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
2020-11-20 13:25:25 +08:00
|
|
|
*
|
2022-04-24 03:02:38 +08:00
|
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
|
|
* list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
|
|
* and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
2020-11-20 13:25:25 +08:00
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
**************************************************************************************************/
|
|
|
|
/*! \file
|
|
|
|
\brief Implicit GEMM testbed
|
|
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
|
2022-07-20 03:23:54 +08:00
|
|
|
#include <fstream>
|
|
|
|
|
2020-11-20 13:25:25 +08:00
|
|
|
#include "../../common/cutlass_unit_test.h"
|
|
|
|
#include "cutlass/cutlass.h"
|
|
|
|
|
|
|
|
|
|
|
|
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
|
|
|
#include "cutlass/reduction/device/reduce_split_k.h"
|
|
|
|
#include "cutlass/reduction/thread/reduction_operators.h"
|
|
|
|
|
|
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
|
|
|
|
|
|
#include "cutlass/util/reference/host/convolution.h"
|
|
|
|
|
|
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
|
|
|
|
|
|
#include "cutlass/util/reference/device/convolution.h"
|
|
|
|
#include "cutlass/util/reference/device/tensor_compare.h"
|
|
|
|
|
|
|
|
#include "conv3d_problems.h"
|
|
|
|
#include "cutlass/core_io.h"
|
|
|
|
|
2021-09-21 02:02:22 +08:00
|
|
|
#include "cache_testbed_output.h"
|
|
|
|
|
2020-11-20 13:25:25 +08:00
|
|
|
namespace test {
|
|
|
|
namespace conv {
|
|
|
|
namespace device {
|
|
|
|
|
|
|
|
template <typename Conv3d>
|
|
|
|
class TestbedConv3d {
|
|
|
|
public:
|
|
|
|
|
|
|
|
using ElementA = typename Conv3d::ElementA;
|
|
|
|
using LayoutA = typename Conv3d::LayoutA;
|
|
|
|
using ElementB = typename Conv3d::ElementB;
|
|
|
|
using LayoutB = typename Conv3d::LayoutB;
|
|
|
|
using ElementC = typename Conv3d::ElementC;
|
|
|
|
using LayoutC = typename Conv3d::LayoutC;
|
|
|
|
using ElementAccumulator = typename Conv3d::ElementAccumulator;
|
|
|
|
using ElementCompute = typename Conv3d::ElementCompute;
|
|
|
|
using EpilogueOutputOp = typename Conv3d::EpilogueOutputOp;
|
|
|
|
|
|
|
|
static cutlass::conv::Operator const kConvolutionalOperator = Conv3d::kConvolutionalOperator;
|
|
|
|
|
|
|
|
/// Reduction kernel
|
|
|
|
using ReductionOp = cutlass::reduction::thread::ReduceAdd<
|
|
|
|
ElementAccumulator,
|
|
|
|
typename EpilogueOutputOp::ElementAccumulator,
|
|
|
|
EpilogueOutputOp::kCount
|
|
|
|
>;
|
|
|
|
|
|
|
|
using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK<
|
|
|
|
cutlass::MatrixShape<4, 32 * EpilogueOutputOp::kCount>,
|
|
|
|
EpilogueOutputOp,
|
|
|
|
ReductionOp
|
|
|
|
>;
|
|
|
|
|
|
|
|
using ReductionDevice = cutlass::reduction::device::ReduceSplitK<ReductionKernel>;
|
2021-07-23 12:40:53 +08:00
|
|
|
using ReductionStrideIndex = typename ReductionDevice::StrideIndex;
|
|
|
|
|
2020-11-20 13:25:25 +08:00
|
|
|
public:
|
|
|
|
|
|
|
|
/// Initialization
|
|
|
|
cutlass::Distribution::Kind init_A;
|
|
|
|
cutlass::Distribution::Kind init_B;
|
|
|
|
cutlass::Distribution::Kind init_C;
|
|
|
|
uint64_t seed;
|
|
|
|
|
|
|
|
cutlass::HostTensor<ElementA, LayoutA> tensor_A;
|
|
|
|
cutlass::HostTensor<ElementB, LayoutB> tensor_B;
|
|
|
|
cutlass::HostTensor<ElementC, LayoutC> tensor_C;
|
|
|
|
cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed;
|
|
|
|
cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference;
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
TestbedConv3d(
|
|
|
|
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
|
|
|
|
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
|
|
|
|
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
|
|
|
|
uint64_t seed_ = 2080
|
|
|
|
):
|
|
|
|
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) {
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Helper to initialize a tensor view
|
|
|
|
template <typename Element, typename Layout>
|
|
|
|
void initialize_tensor(
|
|
|
|
cutlass::TensorView<Element, Layout> view,
|
|
|
|
cutlass::Distribution::Kind dist_kind,
|
|
|
|
uint64_t seed) {
|
|
|
|
|
|
|
|
if (dist_kind == cutlass::Distribution::Uniform) {
|
|
|
|
|
|
|
|
int scope;
|
|
|
|
int bits = cutlass::sizeof_bits<Element>::value;
|
|
|
|
|
|
|
|
if (bits <= 8) {
|
|
|
|
scope = 2;
|
|
|
|
}
|
|
|
|
else if (bits == 16) {
|
|
|
|
scope = 4;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
scope = 8;
|
|
|
|
}
|
|
|
|
cutlass::reference::host::TensorFillRandomUniform(
|
|
|
|
view, seed, scope, -scope, 0);
|
|
|
|
}
|
|
|
|
else if (dist_kind == cutlass::Distribution::Identity) {
|
|
|
|
|
|
|
|
cutlass::reference::host::TensorFillIdentity(view);
|
|
|
|
}
|
|
|
|
else if (dist_kind == cutlass::Distribution::Gaussian) {
|
|
|
|
|
|
|
|
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
|
|
|
|
}
|
|
|
|
else if (dist_kind == cutlass::Distribution::Sequential) {
|
|
|
|
|
|
|
|
cutlass::reference::host::BlockFillSequential(view.data(), view.capacity());
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize(
|
|
|
|
cutlass::conv::Conv3dProblemSize const &problem_size, uint64_t seed = 2019) {
|
|
|
|
|
|
|
|
tensor_A.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size));
|
|
|
|
tensor_B.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size));
|
|
|
|
tensor_C.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size));
|
|
|
|
tensor_D_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size));
|
|
|
|
tensor_D_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size));
|
|
|
|
|
|
|
|
initialize_tensor(tensor_A.host_view(), init_A, seed);
|
|
|
|
initialize_tensor(tensor_B.host_view(), init_B, seed * 17);
|
|
|
|
initialize_tensor(tensor_C.host_view(), init_C, seed * 39);
|
|
|
|
|
|
|
|
tensor_A.sync_device();
|
|
|
|
tensor_B.sync_device();
|
|
|
|
tensor_C.sync_device();
|
|
|
|
tensor_D_computed.sync_device();
|
|
|
|
tensor_D_reference.sync_device();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool sufficient() const {
|
|
|
|
//
|
|
|
|
// Determine SMEM requirements and waive if not satisfied
|
|
|
|
//
|
|
|
|
|
2022-11-19 22:02:15 +08:00
|
|
|
int smem_size = int(sizeof(typename Conv3d::UnderlyingKernel::SharedStorage));
|
2020-11-20 13:25:25 +08:00
|
|
|
|
|
|
|
cudaDeviceProp properties;
|
|
|
|
int device_idx;
|
|
|
|
cudaError_t result = cudaGetDevice(&device_idx);
|
|
|
|
|
|
|
|
if (result != cudaSuccess) {
|
|
|
|
throw std::runtime_error("cudaGetDevice() API call failed.");
|
|
|
|
}
|
|
|
|
|
|
|
|
result = cudaGetDeviceProperties(&properties, device_idx);
|
|
|
|
|
|
|
|
if (result != cudaSuccess) {
|
|
|
|
throw std::runtime_error("cudaGetDeviceProperties() failed");
|
|
|
|
}
|
|
|
|
|
2022-11-19 22:02:15 +08:00
|
|
|
if (properties.sharedMemPerBlockOptin < smem_size) {
|
2020-11-20 13:25:25 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Executes one test
|
|
|
|
bool run(
|
|
|
|
cutlass::conv::Conv3dProblemSize const &problem_size,
|
|
|
|
cutlass::conv::SplitKMode const &split_k_mode = cutlass::conv::SplitKMode::kSerial,
|
|
|
|
ElementCompute alpha = ElementCompute(1),
|
|
|
|
ElementCompute beta = ElementCompute()) {
|
|
|
|
|
2021-02-26 22:58:26 +08:00
|
|
|
|
|
|
|
// Waive test if insufficient CUDA device
|
|
|
|
if (!sufficient()) {
|
|
|
|
if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
|
|
|
|
std::cerr << "Test waived due to insufficient CUDA device." << std::endl;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
2020-11-20 13:25:25 +08:00
|
|
|
|
|
|
|
#if 0 //display conv2d problem size for debugging
|
|
|
|
std::cout << problem_size << std::endl
|
|
|
|
<< "alpha, beta: (" << float(alpha) << ", " << float(beta) << ")" << std::endl
|
|
|
|
<< "split_k_mode: " << ((split_k_mode == cutlass::conv::SplitKMode::kSerial) ? "(serial)" : "(parallel)") << std::endl
|
|
|
|
<< std::endl;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
initialize(problem_size);
|
|
|
|
|
|
|
|
// configure the operator
|
|
|
|
Conv3d conv3d_op;
|
|
|
|
|
|
|
|
typename Conv3d::Arguments conv3d_args(
|
|
|
|
problem_size,
|
|
|
|
tensor_A.device_ref(),
|
|
|
|
tensor_B.device_ref(),
|
|
|
|
tensor_C.device_ref(),
|
|
|
|
tensor_D_computed.device_ref(),
|
|
|
|
{alpha, beta},
|
|
|
|
split_k_mode
|
|
|
|
);
|
|
|
|
|
|
|
|
// find workspace requirement for parallel split-k reduction
|
|
|
|
size_t workspace_size = Conv3d::get_workspace_size(conv3d_args);
|
|
|
|
|
|
|
|
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
|
|
|
|
|
|
|
cutlass::Status status = conv3d_op.initialize(conv3d_args, workspace.get());
|
|
|
|
|
|
|
|
if (status != cutlass::Status::kSuccess) {
|
|
|
|
cudaError_t error = cudaGetLastError();
|
|
|
|
std::cerr << "This test is not supported: " << cudaGetErrorString(error) << "\n";
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// conv3d operation with parallel split-k-mode
|
|
|
|
if (split_k_mode == cutlass::conv::SplitKMode::kParallel) {
|
|
|
|
|
|
|
|
// conv3d output is written to workspace in global memory
|
|
|
|
conv3d_args.ref_D.reset(reinterpret_cast<ElementAccumulator*>(workspace.get()));
|
|
|
|
// accumulate mma for each cta in k-dimension (1.0 * A * B)
|
|
|
|
conv3d_args.output_op = {1.0, 0.0};
|
|
|
|
// update conv3d operator arguments
|
|
|
|
status = conv3d_op.update(conv3d_args, workspace.get());
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess);
|
|
|
|
if (status != cutlass::Status::kSuccess) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// run conv3d operator
|
|
|
|
status = conv3d_op();
|
|
|
|
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess);
|
|
|
|
if (status != cutlass::Status::kSuccess) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (split_k_mode == cutlass::conv::SplitKMode::kParallel) {
|
|
|
|
|
|
|
|
// configure parallel reduction operator
|
|
|
|
ReductionDevice reduction_op;
|
|
|
|
|
|
|
|
typename ReductionDevice::Arguments reduction_args(
|
|
|
|
cutlass::conv::implicit_gemm_problem_size(kConvolutionalOperator, problem_size).mn(),
|
|
|
|
problem_size.split_k_slices,
|
|
|
|
cutlass::conv::implicit_gemm_tensor_c_size(kConvolutionalOperator, problem_size),
|
2021-07-23 12:40:53 +08:00
|
|
|
{
|
|
|
|
reinterpret_cast<ElementAccumulator*> (workspace.get()),
|
2022-11-19 22:02:15 +08:00
|
|
|
ReductionStrideIndex(tensor_C.stride()[Conv3d::UnderlyingKernel::kTensorCStrideIdx])
|
2021-07-23 12:40:53 +08:00
|
|
|
},
|
|
|
|
{
|
|
|
|
tensor_D_computed.device_data(),
|
2022-11-19 22:02:15 +08:00
|
|
|
ReductionStrideIndex(tensor_C.stride()[Conv3d::UnderlyingKernel::kTensorCStrideIdx])
|
2021-07-23 12:40:53 +08:00
|
|
|
},
|
|
|
|
{
|
|
|
|
tensor_C.device_data(),
|
2022-11-19 22:02:15 +08:00
|
|
|
ReductionStrideIndex(tensor_C.stride()[Conv3d::UnderlyingKernel::kTensorCStrideIdx])
|
2021-07-23 12:40:53 +08:00
|
|
|
},
|
|
|
|
// apply alpha, beta to obtain the following equation alpha * ReduceAdd(A * B) + beta * C
|
|
|
|
{alpha, beta}
|
2020-11-20 13:25:25 +08:00
|
|
|
);
|
|
|
|
|
|
|
|
status = reduction_op.initialize(reduction_args, nullptr);
|
|
|
|
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess);
|
|
|
|
if (status != cutlass::Status::kSuccess) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// run prallel reduction kernel
|
|
|
|
status = reduction_op();
|
|
|
|
|
|
|
|
EXPECT_TRUE(status == cutlass::Status::kSuccess);
|
|
|
|
if (status != cutlass::Status::kSuccess) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bool passed = false;
|
|
|
|
|
2021-07-23 12:40:53 +08:00
|
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
|
|
EXPECT_EQ(result, cudaSuccess) << " device reference error: "
|
|
|
|
<< cudaGetErrorString(result);
|
|
|
|
|
|
|
|
tensor_D_computed.sync_host();
|
|
|
|
|
2021-09-21 02:02:22 +08:00
|
|
|
//
|
|
|
|
// Reference check - support caching results
|
|
|
|
//
|
|
|
|
|
|
|
|
CachedTestKey cached_test_key = CreateCachedConv3dTestKey<
|
|
|
|
ElementA, LayoutA,
|
|
|
|
ElementB, LayoutB,
|
|
|
|
ElementC, LayoutC,
|
|
|
|
ElementAccumulator,
|
|
|
|
ElementCompute
|
|
|
|
>(
|
|
|
|
kConvolutionalOperator,
|
|
|
|
problem_size,
|
|
|
|
alpha,
|
|
|
|
beta,
|
|
|
|
tensor_A.host_view(),
|
|
|
|
tensor_B.host_view(),
|
|
|
|
tensor_C.host_view()
|
|
|
|
);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Look for the cached key
|
|
|
|
//
|
|
|
|
|
|
|
|
bool cached_result_loaded = false;
|
|
|
|
CachedTestResult cached_test_result;
|
|
|
|
|
|
|
|
std::string conv2d_result_cache_name =
|
|
|
|
std::string("cached_results_") + CUTLASS_TARGET_NAME + ".txt";
|
|
|
|
|
|
|
|
if (CUTLASS_TEST_ENABLE_CACHED_RESULTS) {
|
|
|
|
|
|
|
|
CachedTestResultListing cached_results(conv2d_result_cache_name);
|
|
|
|
|
|
|
|
auto cached = cached_results.find(cached_test_key);
|
|
|
|
|
|
|
|
cached_result_loaded = cached.first;
|
|
|
|
if (cached_result_loaded) {
|
|
|
|
cached_test_result = cached.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!cached_result_loaded) {
|
|
|
|
|
2021-07-23 12:40:53 +08:00
|
|
|
#if CUTLASS_CONV_TEST_UNIT_REFERENCE_DEVICE_ENABLED
|
|
|
|
|
|
|
|
cutlass::reference::device::Conv3d<
|
|
|
|
ElementA,
|
|
|
|
LayoutA,
|
|
|
|
ElementB,
|
|
|
|
LayoutB,
|
|
|
|
ElementC,
|
|
|
|
LayoutC,
|
|
|
|
ElementAccumulator,
|
|
|
|
ElementCompute
|
|
|
|
>(
|
|
|
|
kConvolutionalOperator,
|
|
|
|
problem_size,
|
|
|
|
tensor_A.device_ref(),
|
|
|
|
tensor_B.device_ref(),
|
|
|
|
tensor_C.device_ref(),
|
|
|
|
tensor_D_reference.device_ref(),
|
|
|
|
alpha,
|
|
|
|
beta
|
|
|
|
);
|
|
|
|
|
|
|
|
// sync host (copy device data to host) for dumping error output in case of mismatches
|
|
|
|
tensor_D_reference.sync_host();
|
|
|
|
|
|
|
|
#else
|
2020-11-20 13:25:25 +08:00
|
|
|
cutlass::reference::host::Conv3d<
|
|
|
|
ElementA,
|
|
|
|
LayoutA,
|
|
|
|
ElementB,
|
|
|
|
LayoutB,
|
|
|
|
ElementC,
|
|
|
|
LayoutC,
|
|
|
|
ElementAccumulator,
|
|
|
|
ElementCompute
|
|
|
|
>(
|
|
|
|
kConvolutionalOperator,
|
|
|
|
problem_size,
|
|
|
|
tensor_A.host_ref(),
|
|
|
|
tensor_B.host_ref(),
|
|
|
|
tensor_C.host_ref(),
|
|
|
|
tensor_D_reference.host_ref(),
|
|
|
|
alpha,
|
|
|
|
beta
|
|
|
|
);
|
2021-07-23 12:40:53 +08:00
|
|
|
#endif
|
2020-11-20 13:25:25 +08:00
|
|
|
|
2021-09-21 02:02:22 +08:00
|
|
|
if (CUTLASS_TEST_ENABLE_CACHED_RESULTS) {
|
|
|
|
|
|
|
|
cached_test_result.D = TensorHash(tensor_D_reference.host_view());
|
|
|
|
|
|
|
|
CachedTestResultListing cached_results(conv2d_result_cache_name);
|
|
|
|
|
|
|
|
cached_results.append(cached_test_key, cached_test_result);
|
|
|
|
cached_results.write(conv2d_result_cache_name);
|
|
|
|
}
|
|
|
|
} // if (!cached_result_loaded)
|
|
|
|
|
|
|
|
uint32_t tensor_D_hash = TensorHash(tensor_D_computed.host_view());
|
|
|
|
|
|
|
|
if (CUTLASS_TEST_ENABLE_CACHED_RESULTS) {
|
|
|
|
passed = (tensor_D_hash == cached_test_result.D);
|
|
|
|
|
|
|
|
EXPECT_EQ(tensor_D_hash, cached_test_result.D)
|
|
|
|
<< "Hash-based comparison failed for key:" << "\n" << cached_test_key << "\n";
|
|
|
|
}
|
|
|
|
else {
|
2020-11-20 13:25:25 +08:00
|
|
|
|
2021-09-21 02:02:22 +08:00
|
|
|
passed = cutlass::reference::host::TensorEquals(
|
|
|
|
tensor_D_computed.host_view(),
|
|
|
|
tensor_D_reference.host_view());
|
|
|
|
}
|
|
|
|
|
2020-11-20 13:25:25 +08:00
|
|
|
EXPECT_TRUE(passed);
|
|
|
|
|
|
|
|
if (!passed) {
|
|
|
|
std::stringstream fname;
|
|
|
|
|
|
|
|
fname << "error_Conv3d_ImplicitGemm_device_"
|
|
|
|
<< (split_k_mode == cutlass::conv::SplitKMode::kSerial ? "serial_reduction_" : "parallel_reduction_")
|
|
|
|
<< (Conv3d::kConvolutionalOperator == cutlass::conv::Operator::kFprop ? "fprop_" :
|
|
|
|
(Conv3d::kConvolutionalOperator == cutlass::conv::Operator::kDgrad ? "dgrad_" : "wgrad_"))
|
|
|
|
<< "ndhwc_"
|
|
|
|
<< problem_size.N << "x"
|
|
|
|
<< problem_size.D << "x"
|
|
|
|
<< problem_size.H << "x"
|
|
|
|
<< problem_size.W << "x"
|
|
|
|
<< problem_size.C
|
|
|
|
<< "_ktrsc_"
|
|
|
|
<< problem_size.K << "x"
|
|
|
|
<< problem_size.T << "x"
|
|
|
|
<< problem_size.R << "x"
|
|
|
|
<< problem_size.S << "x"
|
|
|
|
<< problem_size.C
|
|
|
|
<< "_padding_"
|
|
|
|
<< problem_size.pad_d << "x"
|
|
|
|
<< problem_size.pad_h << "x"
|
|
|
|
<< problem_size.pad_w
|
|
|
|
<< "_stride_"
|
|
|
|
<< problem_size.stride_d << "x"
|
|
|
|
<< problem_size.stride_h << "x"
|
|
|
|
<< problem_size.stride_w
|
|
|
|
<< "_dilation_"
|
|
|
|
<< problem_size.dilation_d << "x"
|
|
|
|
<< problem_size.dilation_h << "x"
|
|
|
|
<< problem_size.dilation_w << "_"
|
|
|
|
<< (problem_size.mode == cutlass::conv::Mode::kCrossCorrelation ? "xcorr_" : "conv_")
|
|
|
|
<< Conv3d::ThreadblockShape::kM << "x"
|
|
|
|
<< Conv3d::ThreadblockShape::kN << "x"
|
|
|
|
<< Conv3d::ThreadblockShape::kK << "_"
|
|
|
|
<< Conv3d::WarpShape::kM << "x"
|
|
|
|
<< Conv3d::WarpShape::kN << "x"
|
|
|
|
<< Conv3d::WarpShape::kK << ".txt";
|
|
|
|
|
|
|
|
std::cout << fname.str() << std::endl;
|
|
|
|
|
|
|
|
std::ofstream results(fname.str());
|
|
|
|
|
|
|
|
results << problem_size << std::endl;
|
|
|
|
|
|
|
|
results
|
|
|
|
<< "\nA:\n" << tensor_A.host_view() << "\n"
|
|
|
|
<< "\nB:\n" << tensor_B.host_view() << "\n"
|
2021-09-21 02:02:22 +08:00
|
|
|
<< "\nC:\n" << tensor_C.host_view() << "\n";
|
|
|
|
|
|
|
|
|
|
|
|
results << "\nD reference (hash: " << cached_test_result.D << ")\n";
|
|
|
|
|
|
|
|
if (!cached_result_loaded) {
|
|
|
|
results
|
|
|
|
<< tensor_D_reference.host_view() << "\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
results
|
|
|
|
<< "\nD computed (hash: " << tensor_D_hash << ")\n"
|
|
|
|
<< tensor_D_computed.host_view() << "\n";
|
2020-11-20 13:25:25 +08:00
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return passed;
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// TestAllConv: Runs cutlass::conv::device::ImplicitGemmConvolution operator and compares it with reference
|
|
|
|
// TestAllConv runs conv operator on default conv problem sizes from test::conv::device::TestbedConv2dProblemSizes
|
2023-04-15 11:19:34 +08:00
|
|
|
// Additionally, each conv3d test can provide conv problem sizes (conv_test_sizes) and blacklist of sizes
|
2020-11-20 13:25:25 +08:00
|
|
|
// (conv_blacklist_sizes)
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
template <typename ImplicitGemm>
|
|
|
|
bool TestAllConv3d(
|
|
|
|
const Conv3dProblemVector & conv_test_sizes = Conv3dProblemVector(),
|
|
|
|
const Conv3dProblemVector & conv_blacklist_sizes = Conv3dProblemVector()) {
|
|
|
|
|
|
|
|
bool passed = true;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Testbed object
|
|
|
|
//
|
|
|
|
|
|
|
|
//TestbedConv3d<ImplicitGemm> testbed(cutlass::Distribution::Sequential, cutlass::Distribution::Sequential, cutlass::Distribution::Sequential);
|
|
|
|
TestbedConv3d<ImplicitGemm> testbed;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Get conv problem sizes to run conv operator
|
|
|
|
//
|
|
|
|
TestbedConv3dProblemSizes conv3d_problems(128/cutlass::sizeof_bits<typename ImplicitGemm::ElementA>::value);
|
|
|
|
|
|
|
|
// Vector of conv3d problem sizes to avoid duplicate runs
|
|
|
|
Conv3dProblemVector conv_tested_sizes;
|
|
|
|
|
|
|
|
Conv3dProblemVector const *problem_vectors[] = {
|
|
|
|
&conv3d_problems.conv3d_default_sizes,
|
|
|
|
&conv3d_problems.conv3d_vnet_medical_sizes,
|
|
|
|
&conv_test_sizes
|
|
|
|
};
|
|
|
|
|
|
|
|
// Sweep conv3d problem sizes (split-k-mode=kSerial, split-k-slice=1, alpha=1.0, beta=0.0)
|
|
|
|
for (Conv3dProblemVector const * problem_vector : problem_vectors) {
|
|
|
|
|
|
|
|
// Run conv testbed on default convolution sizes
|
|
|
|
for(auto conv_problem : *problem_vector) {
|
|
|
|
|
|
|
|
// Skip blacklist and avoid duplicate problem sizes
|
|
|
|
if (std::find(conv_blacklist_sizes.begin(), conv_blacklist_sizes.end(), conv_problem) != conv_blacklist_sizes.end() ||
|
|
|
|
std::find(conv_tested_sizes.begin(), conv_tested_sizes.end(), conv_problem) != conv_tested_sizes.end()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Procedurally disable certain cases
|
|
|
|
//
|
|
|
|
|
2021-02-26 22:58:26 +08:00
|
|
|
// CUTLASS DGRAD's unity stride specialization only support stride {1, 1, 1}
|
2020-11-20 13:25:25 +08:00
|
|
|
if ((ImplicitGemm::kConvolutionalOperator ==
|
|
|
|
cutlass::conv::Operator::kDgrad) &&
|
2022-11-19 22:02:15 +08:00
|
|
|
((ImplicitGemm::UnderlyingKernel::Mma::IteratorA::kStrideSupport ==
|
2021-02-26 22:58:26 +08:00
|
|
|
cutlass::conv::StrideSupport::kUnity) ||
|
2022-11-19 22:02:15 +08:00
|
|
|
(ImplicitGemm::UnderlyingKernel::Mma::IteratorB::kStrideSupport ==
|
2021-02-26 22:58:26 +08:00
|
|
|
cutlass::conv::StrideSupport::kUnity))) {
|
|
|
|
if (!((conv_problem.stride_d == 1) &&
|
|
|
|
(conv_problem.stride_h == 1) &&
|
|
|
|
(conv_problem.stride_w == 1))
|
|
|
|
) {
|
2020-11-20 13:25:25 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Test
|
|
|
|
//
|
|
|
|
// push back tested problem size to avoid re-running duplicates
|
|
|
|
conv_tested_sizes.push_back(conv_problem);
|
|
|
|
|
|
|
|
// test mode = xcross
|
|
|
|
passed = testbed.run(
|
|
|
|
conv_problem,
|
|
|
|
cutlass::conv::SplitKMode::kSerial);
|
|
|
|
|
|
|
|
if (!passed) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// test mode = convolution
|
|
|
|
passed = testbed.run(
|
|
|
|
conv_problem.reset_mode(cutlass::conv::Mode::kConvolution),
|
|
|
|
cutlass::conv::SplitKMode::kSerial);
|
|
|
|
|
|
|
|
if (!passed) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sweep split-k-slice using serial reduction with non-unity alpha and non-zero beta for
|
|
|
|
// a single conv2d problem size. Convolution unit tests take a long time to run so only sweep parameters
|
2023-11-03 11:54:46 +08:00
|
|
|
// which are abolutely necessary to catch functional bugs. The below code does provide option to sweep
|
2020-11-20 13:25:25 +08:00
|
|
|
// alpha and beta for local testing, but only runs one value for alpha and beta.
|
|
|
|
cutlass::conv::Conv3dProblemSize conv3d_split_k_test_size (
|
|
|
|
{1, 8, 8, 8, 32}, // input size (NDHWC)
|
|
|
|
{32, 3, 3, 3, 32}, // filter size (KTRSC)
|
|
|
|
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
|
|
|
|
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
|
|
|
|
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
|
|
|
|
);
|
|
|
|
|
|
|
|
cutlass::conv::SplitKMode split_k_modes [] = {
|
|
|
|
cutlass::conv::SplitKMode::kSerial,
|
|
|
|
cutlass::conv::SplitKMode::kParallel
|
|
|
|
};
|
|
|
|
|
|
|
|
int split_k_slices[] = {
|
|
|
|
1, 2, 3, 4, 201
|
|
|
|
};
|
|
|
|
|
|
|
|
double problem_alpha[] = {
|
|
|
|
2.0
|
|
|
|
};
|
|
|
|
|
|
|
|
double problem_beta[] = {
|
|
|
|
2.0
|
|
|
|
};
|
|
|
|
|
|
|
|
for (auto split_k_mode : split_k_modes) {
|
|
|
|
for (auto split_k_slice : split_k_slices) {
|
|
|
|
for (auto alpha : problem_alpha) {
|
|
|
|
for (auto beta : problem_beta) {
|
|
|
|
|
|
|
|
passed = testbed.run(
|
|
|
|
conv3d_split_k_test_size.reset_split_k_slices(split_k_slice),
|
|
|
|
split_k_mode,
|
|
|
|
cutlass::from_real<typename ImplicitGemm::ElementCompute>(alpha),
|
|
|
|
cutlass::from_real<typename ImplicitGemm::ElementCompute>(beta));
|
|
|
|
|
|
|
|
if (!passed) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return passed;
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
} // namespace device
|
|
|
|
} // namespace conv
|
|
|
|
} // namespace test
|