cutlass/test/unit/epilogue/thread/linear_combination_planar_complex.cu

281 lines
9.7 KiB
Plaintext
Raw Normal View History

/***************************************************************************************************
2021-02-26 22:58:26 +08:00
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit tests for thread-level GEMM
*/
#include "../../common/cutlass_unit_test.h"
#include "cutlass/epilogue/thread/linear_combination_planar_complex.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace epilogue {
namespace thread {
using FunctorPlanarComplexF32F32 = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
float,
4,
float,
float>;
__global__ void epilogue_thread_functor_planar_complex_f32_f32(
float *output_ptr,
float const *accum_ptr,
float const *source_ptr,
typename FunctorPlanarComplexF32F32::Params params) {
FunctorPlanarComplexF32F32 linear_combination_op(params);
auto accum = *reinterpret_cast<cutlass::ArrayPlanarComplex<float , 4> const *>(accum_ptr);
auto source = *reinterpret_cast<cutlass::ArrayPlanarComplex<float, 4> const *>(source_ptr);
*reinterpret_cast<cutlass::ArrayPlanarComplex<float, 4>*>(output_ptr) = linear_combination_op(accum, source);
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_thread_linear_combination_planar_complex, f32) {
using Element = float;
using ElementOutput = float;
int const kCount = 4;
using Functor = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kCount,
Element,
Element>;
cutlass::complex<Element> alpha(Element(2), Element(1));
cutlass::complex<Element> beta(Element(1), Element(-1));
typename Functor::Params params(alpha, beta);
Functor linear_combination_op(params);
cutlass::ArrayPlanarComplex<ElementOutput, kCount> source;
cutlass::ArrayPlanarComplex<Element, kCount> accum;
// Define arbitrary inputs
for (int i = 0; i < kCount; ++i) {
accum.real[i] = Element(i * 2);
accum.imag[i] = Element((i * 3 % 6) - 3);
source.real[i] = ElementOutput((i * 7 % 9) - 4);
source.imag[i] = ElementOutput(((i * 5 + 2) % 9) - 4);
}
cutlass::ArrayPlanarComplex<ElementOutput, kCount> destination = linear_combination_op(accum, source);
// Verify each result
for (int i = 0; i < kCount; ++i) {
cutlass::complex<Element> expected = alpha * cutlass::complex<Element>(accum.real[i], accum.imag[i]) +
beta * cutlass::complex<Element>(Element(source.real[i]), Element(source.imag[i]));
cutlass::complex<ElementOutput> got(destination.real[i], destination.imag[i]);
EXPECT_TRUE(ElementOutput(expected.real()) == got.real());
EXPECT_TRUE(ElementOutput(expected.imag()) == got.imag());
EXPECT_TRUE(expected.real() != Element(0) || expected.imag() != Element(0));
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace epilogue {
namespace thread {
using FunctorPlanarComplexF16F32 = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
cutlass::half_t,
4,
float,
float>;
__global__ void epilogue_thread_functor_planar_complex_f16_f32(
cutlass::half_t *output_ptr,
float const *accum_ptr,
cutlass::half_t const *source_ptr,
typename FunctorPlanarComplexF16F32::Params params,
int N) {
FunctorPlanarComplexF16F32 linear_combination_op(params);
auto accum = *reinterpret_cast<cutlass::ArrayPlanarComplex<float , 4> const *>(accum_ptr);
auto source = *reinterpret_cast<cutlass::ArrayPlanarComplex<cutlass::half_t , 4> const *>(source_ptr);
#pragma unroll 1
for (int n = 0; n < N; ++n) {
source = linear_combination_op(accum, source);
}
*reinterpret_cast<cutlass::ArrayPlanarComplex<cutlass::half_t , 4>*>(output_ptr) = source;
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_thread_linear_combination_planar_complex, f16_f32) {
using Element = float;
using ElementOutput = cutlass::half_t;
int const kCount = 4;
using Functor = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kCount,
Element,
Element>;
cutlass::complex<Element> alpha(Element(2), Element(1));
cutlass::complex<Element> beta(Element(1), Element(-1));
typename Functor::Params params(alpha, beta);
Functor linear_combination_op(params);
cutlass::ArrayPlanarComplex<ElementOutput, kCount> source;
cutlass::ArrayPlanarComplex<Element, kCount> accum;
// Define arbitrary inputs
for (int i = 0; i < kCount; ++i) {
accum.real[i] = Element(i * 2);
accum.imag[i] = Element((i * 3 % 6) - 3);
source.real[i] = ElementOutput((i * 7 % 9) - 4);
source.imag[i] = ElementOutput(((i * 5 + 2) % 9) - 4);
}
cutlass::ArrayPlanarComplex<ElementOutput, kCount> destination = linear_combination_op(accum, source);
// Verify each result
for (int i = 0; i < kCount; ++i) {
cutlass::complex<Element> expected = alpha * cutlass::complex<Element>(accum.real[i], accum.imag[i]) +
beta * cutlass::complex<Element>(Element(source.real[i]), Element(source.imag[i]));
cutlass::complex<ElementOutput> got(destination.real[i], destination.imag[i]);
EXPECT_TRUE(ElementOutput(expected.real()) == got.real());
EXPECT_TRUE(ElementOutput(expected.imag()) == got.imag());
EXPECT_TRUE(expected.real() != Element(0) || expected.imag() != Element(0));
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace test {
namespace epilogue {
namespace thread {
using FunctorPlanarComplexF16F16 = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
cutlass::half_t,
4,
cutlass::half_t,
cutlass::half_t>;
__global__ void epilogue_thread_functor_planar_complex_f16_f16(
cutlass::half_t *output_ptr,
cutlass::half_t const *accum_ptr,
cutlass::half_t const *source_ptr,
typename FunctorPlanarComplexF16F16::Params params,
int N) {
FunctorPlanarComplexF16F16 linear_combination_op(params);
auto accum = *reinterpret_cast<cutlass::ArrayPlanarComplex<cutlass::half_t , 4> const *>(accum_ptr);
auto source = *reinterpret_cast<cutlass::ArrayPlanarComplex<cutlass::half_t , 4> const *>(source_ptr);
#pragma unroll 1
for (int n = 0; n < N; ++n) {
source = linear_combination_op(accum, source);
}
*reinterpret_cast<cutlass::ArrayPlanarComplex<cutlass::half_t , 4>*>(output_ptr) = source;
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Epilogue_thread_linear_combination_planar_complex, f16_f16) {
using Element = cutlass::half_t;
using ElementOutput = cutlass::half_t;
int const kCount = 8;
using Functor = cutlass::epilogue::thread::LinearCombinationPlanarComplex<
ElementOutput,
kCount,
Element,
Element>;
cutlass::complex<Element> alpha(Element(2), Element(1));
cutlass::complex<Element> beta(Element(1), Element(-1));
typename Functor::Params params(alpha, beta);
Functor linear_combination_op(params);
cutlass::ArrayPlanarComplex<ElementOutput, kCount> source;
cutlass::ArrayPlanarComplex<Element, kCount> accum;
// Define arbitrary inputs
for (int i = 0; i < kCount; ++i) {
accum.real[i] = Element(i * 2);
accum.imag[i] = Element((i * 3 % 6) - 3);
source.real[i] = ElementOutput((i * 7 % 9) - 4);
source.imag[i] = ElementOutput(((i * 5 + 2) % 9) - 4);
}
cutlass::ArrayPlanarComplex<ElementOutput, kCount> destination = linear_combination_op(accum, source);
// Verify each result
for (int i = 0; i < kCount; ++i) {
cutlass::complex<Element> expected = alpha * cutlass::complex<Element>(accum.real[i], accum.imag[i]) +
beta * cutlass::complex<Element>(Element(source.real[i]), Element(source.imag[i]));
cutlass::complex<ElementOutput> got(destination.real[i], destination.imag[i]);
EXPECT_TRUE(ElementOutput(expected.real()) == got.real());
EXPECT_TRUE(ElementOutput(expected.imag()) == got.imag());
EXPECT_TRUE(expected.real() != Element(0) || expected.imag() != Element(0));
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////