cutlass/tools/util/reference/device/gemm.h

225 lines
7.1 KiB
C
Raw Normal View History

2018-10-27 05:38:46 +08:00
/***************************************************************************************************
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Reference implementation for GEMM in device-side code.
*/
#pragma once
#include "cutlass/coord.h"
#include "cutlass/matrix_traits.h"
#include "cutlass/tensor_view.h"
#include "cutlass/gemm/gemm_coord.h"
#include "tools/util/reference/device/kernel/gemm.h"
namespace cutlass {
namespace reference {
namespace device {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
/// objects.
///
/// Explicitly naming types needed by this template can be cumbersome, particularly for the
/// accumulator type, so a function argument 'initial_accum' is exposed. Passing
/// AccumulatorType(0) as the last function argument can be easier than naming all template
/// arguments explicitly.
template <
typename TensorRefA,
typename TensorRefB,
typename TensorRefC,
typename ScalarType,
typename AccumulatorType
>
void Gemm(
gemm::GemmCoord problem_size,
ScalarType alpha,
TensorRefA tensor_a,
TensorRefB tensor_b,
ScalarType beta,
TensorRefC tensor_c,
AccumulatorType initial_accum) {
typedef typename TensorRefA::Storage AType;
typedef typename TensorRefB::Storage BType;
typedef typename TensorRefC::Storage CType;
static_assert(
TensorRefA::kRank == 2 &&
TensorRefB::kRank == 2 &&
TensorRefC::kRank == 2, "Tensors must be of rank 2");
// Blocking structure potentially improves performance of reference implementation
// with a minor increase in complexity.
//
// Note, this reference implementation is NOT expected to approach peak performance.
typedef Shape<1, 4, 4> OutputTile;
dim3 block(16, 8);
dim3 grid(
(problem_size.m() + block.x * OutputTile::kW - 1) / (block.x * OutputTile::kW),
(problem_size.n() + block.y * OutputTile::kH - 1) / (block.y * OutputTile::kH)
);
// Launch a GEMM kernel
kernel::Gemm<
TensorRefA,
TensorRefB,
TensorRefC,
ScalarType,
AccumulatorType,
OutputTile
><<< grid, block >>>(
problem_size,
alpha,
tensor_a,
tensor_b,
beta,
tensor_c,
initial_accum
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
/// objects.
///
/// This assumes the accumulator type is the same type as the scalars.
template <
typename TensorRefA,
typename TensorRefB,
typename TensorRefC,
typename ScalarType
>
void Gemm(
gemm::GemmCoord problem_size,
ScalarType alpha,
TensorRefA tensor_a,
TensorRefB tensor_b,
ScalarType beta,
TensorRefC tensor_c) {
Gemm(problem_size, alpha, tensor_a, tensor_b, beta, tensor_c, ScalarType(0));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Batched GEMM
//
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Computes a batch of GEMMs over a set of matrices of common dimension.
//
// TensorRefCollection* is a type satisfying the TensorRefCollection concept.
//
template <
typename TensorRefCollectionA,
typename TensorRefCollectionB,
typename TensorRefCollectionC,
typename ScalarType,
typename AccumulatorType
>
void BatchedGemm(
gemm::GemmCoord problem_size,
ScalarType alpha,
TensorRefCollectionA tensor_a,
TensorRefCollectionB tensor_b,
ScalarType beta,
TensorRefCollectionC tensor_c,
AccumulatorType initial_accum) {
typedef typename TensorRefCollectionA::Storage AType;
typedef typename TensorRefCollectionB::Storage BType;
typedef typename TensorRefCollectionC::Storage CType;
static_assert(
TensorRefCollectionA::kRank == 2 &&
TensorRefCollectionB::kRank == 2 &&
TensorRefCollectionC::kRank == 2, "Tensors must be of rank 2");
// Blocking structure potentially improves performance of reference implementation
// with a minor increase in complexity.
//
// Note, this reference implementation is NOT expected to approach peak performance.
typedef Shape<1, 4, 4> OutputTile;
dim3 block(16, 8);
dim3 grid(
(problem_size.m() + block.x * OutputTile::kW - 1) / (block.x * OutputTile::kW),
(problem_size.n() + block.y * OutputTile::kH - 1) / (block.y * OutputTile::kH),
problem_size.batch()
);
// Launch a GEMM kernel
kernel::BatchedGemm<
TensorRefCollectionA,
TensorRefCollectionB,
TensorRefCollectionC,
ScalarType,
AccumulatorType,
OutputTile
><<< grid, block >>>(
problem_size,
alpha,
tensor_a,
tensor_b,
beta,
tensor_c,
initial_accum
);
}
/// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef
/// objects.
//
// TensorRefCollection* is a type satisfying the TensorRefCollection concept.
//
template <
typename TensorRefCollectionA,
typename TensorRefCollectionB,
typename TensorRefCollectionC,
typename ScalarType,
typename AccumulatorType
>
void BatchedGemm(
gemm::GemmCoord problem_size,
ScalarType alpha,
TensorRefCollectionA tensor_a,
TensorRefCollectionB tensor_b,
ScalarType beta,
TensorRefCollectionC tensor_c) {
BatchedGemm(problem_size, alpha, tensor_a, tensor_b, beta, tensor_c, ScalarType(0));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace host
} // namespace reference
} // namespace cutlass