2023-04-15 11:19:34 +08:00
|
|
|
/***************************************************************************************************
|
2024-01-17 03:37:22 +08:00
|
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2023-04-15 11:19:34 +08:00
|
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
|
|
* list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
|
|
* and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
**************************************************************************************************/
|
|
|
|
/*! \file
|
|
|
|
\brief Contains additional metadata about layout permute functions used in the example.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "cutlass/tensor_coord.h"
|
|
|
|
#include "cutlass/layout/permute.h"
|
|
|
|
|
|
|
|
/// Additional permutation metadata to facilitate testing/printing
|
|
|
|
template<typename PermuteLayout>
|
|
|
|
struct PermuteInfo;
|
|
|
|
|
|
|
|
/// Specialization for default case (no permute). Other specializations must follow this template.
|
|
|
|
template<>
|
|
|
|
struct PermuteInfo<cutlass::layout::NoPermute> {
|
|
|
|
|
|
|
|
/// Whether this is a BMM or GEMM permutation (NoPermute can actually be either)
|
|
|
|
static bool constexpr kBatched = false;
|
|
|
|
|
|
|
|
/// Minimal divisor for row extent
|
|
|
|
static int constexpr kRowFactor = 1;
|
|
|
|
|
|
|
|
/// Minimum divisor for column extent
|
|
|
|
static int constexpr kColumnFactor = 1;
|
|
|
|
|
|
|
|
/// Minimum divisor for batch size dimension
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
/// Tensor layout used in permutation operation
|
|
|
|
using Layout = cutlass::layout::PackedVectorLayout;
|
|
|
|
|
|
|
|
static std::string name() {
|
|
|
|
return "NoPermute";
|
|
|
|
}
|
|
|
|
|
|
|
|
/// User-friendly description of the permute operation
|
|
|
|
static std::string desc() {
|
|
|
|
return "no permutation";
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Infer original higher-rank tensor shape from GEMM/BMM matrix extents.
|
|
|
|
/// For direct (output) permutations, must be a simple reshape of extent.
|
|
|
|
/// For inverse (input) permutations, must return shape *before* permute operation.
|
|
|
|
/// In case of NoPermute, simply use a linear (rank 1) view of the memory
|
|
|
|
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
return Layout::TensorCoord(extent.row() * extent.column() * batch_count);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Compute the permuted higher-rank tensor shape from the original shape.
|
|
|
|
static Layout::TensorCoord permute(Layout::TensorCoord const &s) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int D1>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0213RowMajor<D1>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = true;
|
|
|
|
static int constexpr kRowFactor = 1;
|
|
|
|
static int constexpr kColumnFactor = 1;
|
|
|
|
static int constexpr kBatchFactor = D1;
|
|
|
|
|
|
|
|
using Layout = cutlass::layout::TensorNHWC;
|
|
|
|
|
|
|
|
static std::string name() {
|
|
|
|
return "Tensor4DPermuteBMM0213<" + std::to_string(D1) + ">";
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string desc() {
|
|
|
|
return "batched GEMM permutation [0, 2, 1, 3]";
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
int D0 = batch_count / D1;
|
|
|
|
int D2 = extent.row();
|
|
|
|
int D3 = extent.column();
|
|
|
|
return {D0, D1, D2, D3};
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord permute(Layout::TensorCoord const &s) {
|
|
|
|
return {s[0], s[2], s[1], s[3]};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int D1>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0213RowMajorInverse<D1>>
|
|
|
|
: public PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0213RowMajor<D1>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = true;
|
|
|
|
static int constexpr kRowFactor = 1;
|
|
|
|
static int constexpr kColumnFactor = D1;
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
using Base = PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0213RowMajor<D1>>;
|
|
|
|
using Layout = typename Base::Layout;
|
|
|
|
|
|
|
|
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
int D0 = batch_count;
|
|
|
|
int D2 = extent.row();
|
|
|
|
int D3 = extent.column() / D1;
|
|
|
|
return {D0, D1, D2, D3};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int D1>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0321ColumnMajor<D1>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = true;
|
|
|
|
static int constexpr kRowFactor = 1;
|
|
|
|
static int constexpr kColumnFactor = 1;
|
|
|
|
static int constexpr kBatchFactor = D1;
|
|
|
|
|
|
|
|
using Layout = cutlass::layout::TensorNHCW;
|
|
|
|
|
|
|
|
static std::string name() {
|
|
|
|
return "Tensor4DPermuteBMM0321<" + std::to_string(D1) + ">";
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string desc() {
|
|
|
|
return "batched GEMM permutation [0, 3, 2, 1]";
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
int D0 = batch_count / D1;
|
|
|
|
int D2 = extent.row();
|
|
|
|
int D3 = extent.column();
|
|
|
|
return {D0, D1, D2, D3};
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord permute(Layout::TensorCoord const &s) {
|
|
|
|
return {s[0], s[3], s[2], s[1]};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int D1>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0321ColumnMajorInverse<D1>>
|
|
|
|
: public PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0321ColumnMajor<D1>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = true;
|
|
|
|
static int constexpr kRowFactor = D1;
|
|
|
|
static int constexpr kColumnFactor = 1;
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
using Base = PermuteInfo<cutlass::layout::Tensor4DPermuteBMM0321ColumnMajor<D1>>;
|
|
|
|
using Layout = typename Base::Layout;
|
|
|
|
|
|
|
|
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
int D0 = batch_count;
|
|
|
|
int D2 = extent.row() / D1;
|
|
|
|
int D3 = extent.column();
|
|
|
|
return {D0, D1, D2, D3};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int D1, int D2>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajor<D1, D2>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = false;
|
|
|
|
static int constexpr kRowFactor = D1;
|
|
|
|
static int constexpr kColumnFactor = D2;
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
using Layout = cutlass::layout::TensorNHWC;
|
|
|
|
|
|
|
|
static std::string name() {
|
|
|
|
return "Tensor4DPermute0213<" + std::to_string(D1) + "," + std::to_string(D2) + ">";
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string desc() {
|
|
|
|
return "normal GEMM permutation [0, 2, 1, 3]";
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
int D0 = extent.row() / D1;
|
|
|
|
int D3 = extent.column() / D2;
|
|
|
|
return {D0, D1, D2, D3};
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord permute(Layout::TensorCoord const &s) {
|
|
|
|
return {s[0], s[2], s[1], s[3]};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int D1, int D2>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajorInverse<D1, D2>>
|
|
|
|
: public PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajor<D1, D2>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = false;
|
|
|
|
static int constexpr kRowFactor = D2;
|
|
|
|
static int constexpr kColumnFactor = D1;
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
using Base = PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajor<D1, D2>>;
|
|
|
|
using Layout = typename Base::Layout;
|
|
|
|
|
|
|
|
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
int D0 = extent.row() / D2;
|
|
|
|
int D3 = extent.column() / D1;
|
|
|
|
return {D0, D1, D2, D3};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int D1, int D2>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor4DPermute0213ColumnMajor<D1, D2>>
|
|
|
|
: public PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajor<D1, D2>> {
|
|
|
|
using Layout = cutlass::layout::TensorCWHN;
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int D1, int D2>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor4DPermute0213ColumnMajorInverse<D1, D2>>
|
|
|
|
: public PermuteInfo<cutlass::layout::Tensor4DPermute0213RowMajorInverse<D1, D2>> {
|
|
|
|
using Layout = cutlass::layout::TensorCWHN;
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int T1, int T2, int T3>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor5DPermute20314RowMajor<T1, T2, T3>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = false;
|
|
|
|
static int constexpr kRowFactor = T1;
|
|
|
|
static int constexpr kColumnFactor = T2 * T3;
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
using Layout = cutlass::layout::TensorNDHWC;
|
|
|
|
|
|
|
|
static std::string name() {
|
|
|
|
return "Tensor5DPermute20314<" + std::to_string(T1) + "," + std::to_string(T2) + "," + std::to_string(T3) + ">";
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string desc() {
|
|
|
|
return "normal GEMM permutation [2, 0, 3, 1, 4]";
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count)
|
|
|
|
{
|
|
|
|
int const T0 = extent.row() / T1;
|
|
|
|
int const T4 = extent.column() / (T2 * T3);
|
|
|
|
return {T0, T1, T2, T3, T4};
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord permute(Layout::TensorCoord const &s)
|
|
|
|
{
|
|
|
|
return {s[2], s[0], s[3], s[1], s[4]};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int T1, int T2, int T3>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor5DPermute20314RowMajorInverse<T1, T2, T3>>
|
|
|
|
: public PermuteInfo<cutlass::layout::Tensor5DPermute20314RowMajor<T1, T2, T3>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = false;
|
|
|
|
static int constexpr kRowFactor = T2;
|
|
|
|
static int constexpr kColumnFactor = T1 * T3;
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
using Base = PermuteInfo<cutlass::layout::Tensor5DPermute20314RowMajor<T1, T2, T3>>;
|
|
|
|
using Layout = typename Base::Layout;
|
|
|
|
|
|
|
|
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
int const T0 = extent.row() / T2;
|
|
|
|
int const T4 = extent.column() / (T1 * T3);
|
|
|
|
return {T0, T1, T2, T3, T4};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int T1, int T2, int T3>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor5DPermute02413ColumnMajor<T1, T2, T3>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = false;
|
|
|
|
static int constexpr kRowFactor = T1;
|
|
|
|
static int constexpr kColumnFactor = T2 * T3;
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
using Layout = cutlass::layout::TensorCWHDN;
|
|
|
|
|
|
|
|
static std::string name() {
|
|
|
|
return "Tensor5DPermute02413<" + std::to_string(T1) + "," + std::to_string(T2) + "," + std::to_string(T3) + ">";
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string desc() {
|
|
|
|
return "normal GEMM permutation [0, 2, 4, 1, 3]";
|
|
|
|
}
|
|
|
|
|
|
|
|
using Coord = cutlass::Tensor5DCoord;
|
|
|
|
|
|
|
|
static Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count)
|
|
|
|
{
|
|
|
|
int const T0 = extent.row() / T1;
|
|
|
|
int const T4 = extent.column() / (T2 * T3);
|
|
|
|
return {T0, T1, T2, T3, T4};
|
|
|
|
}
|
|
|
|
|
|
|
|
static Layout::TensorCoord permute(Layout::TensorCoord const &s)
|
|
|
|
{
|
|
|
|
return {s[0], s[2], s[4], s[1], s[3]};
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<int T1, int T2, int T3>
|
|
|
|
struct PermuteInfo<cutlass::layout::Tensor5DPermute02413ColumnMajorInverse<T1, T2, T3>>
|
|
|
|
: public PermuteInfo<cutlass::layout::Tensor5DPermute02413ColumnMajor<T1, T2, T3>> {
|
|
|
|
|
|
|
|
static bool constexpr kBatched = false;
|
|
|
|
static int constexpr kRowFactor = T2;
|
|
|
|
static int constexpr kColumnFactor = T1 * T3;
|
|
|
|
static int constexpr kBatchFactor = 1;
|
|
|
|
|
|
|
|
using Base = PermuteInfo<cutlass::layout::Tensor5DPermute02413ColumnMajor<T1, T2, T3>>;
|
|
|
|
using Layout = typename Base::Layout;
|
|
|
|
|
|
|
|
static typename Layout::TensorCoord original_shape(cutlass::MatrixCoord extent, int batch_count) {
|
|
|
|
int const T0 = extent.row() / T2;
|
|
|
|
int const T4 = extent.column() / (T1 * T3);
|
|
|
|
return {T0, T1, T2, T3, T4};
|
|
|
|
}
|
|
|
|
};
|