200 lines
7.7 KiB
C++
200 lines
7.7 KiB
C++
![]() |
/***************************************************************************************************
|
||
|
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||
|
* SPDX-License-Identifier: BSD-3-Clause
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
||
|
* list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* 3. Neither the name of the copyright holder nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived from
|
||
|
* this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
**************************************************************************************************/
|
||
|
|
||
|
#include "cutlass_unit_test.h"
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
#include <thrust/host_vector.h>
|
||
|
#include <thrust/device_vector.h>
|
||
|
|
||
|
#include <cute/tensor.hpp>
|
||
|
|
||
|
namespace cutlass::test {
|
||
|
|
||
|
template <class ElementType, class SmemLayout>
|
||
|
struct SharedStorage
|
||
|
{
|
||
|
cute::array_aligned<ElementType, cute::cosize_v<SmemLayout>> smem;
|
||
|
cute::uint64_t tma_load_mbar[1];
|
||
|
};
|
||
|
|
||
|
#if CUDA_12_0_SM90_FEATURES_SUPPORTED
|
||
|
|
||
|
template <class T, class TiledCopy, class CTA_Tiler, class GmemLayout, class SmemLayout>
|
||
|
__global__ void
|
||
|
tma_test_device_cute(T const* g_in, T* g_out,
|
||
|
CUTE_GRID_CONSTANT TiledCopy const tma, CTA_Tiler cta_tiler,
|
||
|
GmemLayout gmem_layout, SmemLayout smem_layout)
|
||
|
{
|
||
|
using namespace cute;
|
||
|
CUTE_STATIC_ASSERT_V(product_each(shape(cta_tiler)) == product_each(shape(smem_layout)));
|
||
|
|
||
|
// Use Shared Storage structure to allocate and distribute aligned SMEM addresses
|
||
|
extern __shared__ char shared_memory[];
|
||
|
using SharedStorage = SharedStorage<T, SmemLayout>;
|
||
|
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(shared_memory);
|
||
|
// Construct SMEM tensor
|
||
|
Tensor sA = make_tensor(make_smem_ptr(shared_storage.smem.data()), smem_layout); // (CTA_TILE_M,CTA_TILE_N,...)
|
||
|
// Shared memory barriers use 64bits in SMEM for synchronization
|
||
|
uint64_t* tma_load_mbar = shared_storage.tma_load_mbar;
|
||
|
|
||
|
// TMA requires special handling of strides to deal with coord codomain mapping
|
||
|
// Represent the full tensors -- get these from TMA
|
||
|
Tensor mA = tma.get_tma_tensor(shape(gmem_layout));
|
||
|
Tensor mB = make_tensor(make_gmem_ptr(g_out), gmem_layout);
|
||
|
|
||
|
constexpr int R = rank_v<CTA_Tiler>;
|
||
|
Tensor gA = local_tile(mA, cta_tiler, repeat<R>(_)); // (CTA_TILE_M,CTA_TILE_N,...REST_M,REST_N,...)
|
||
|
Tensor gB = local_tile(mB, cta_tiler, repeat<R>(_)); // (CTA_TILE_M,CTA_TILE_N,...REST_M,REST_N,...)
|
||
|
|
||
|
//
|
||
|
// Prepare the TMA_LOAD
|
||
|
//
|
||
|
|
||
|
auto cta_tma = tma.get_slice(Int<0>{}); // CTA slice
|
||
|
|
||
|
Tensor tAgA_x = cta_tma.partition_S(gA); // (TMA,TMA_M,TMA_N,REST_M,REST_N)
|
||
|
Tensor tAsA_x = cta_tma.partition_D(sA); // (TMA,TMA_M,TMA_N)
|
||
|
|
||
|
#if 0
|
||
|
if (thread0()) {
|
||
|
print(tma);
|
||
|
print("TILE : "); print(cta_tiler); print("\n");
|
||
|
print(" mA : "); print( mA.data()); print(" o "); print( mA.layout()); print("\n");
|
||
|
print(" gA : "); print( gA.data()); print(" o "); print( gA.layout()); print("\n");
|
||
|
print("tAgA_x: "); print(tAgA_x.data()); print(" o "); print(tAgA_x.layout()); print("\n");
|
||
|
print(" sA : "); print( sA.data()); print(" o "); print( sA.layout()); print("\n");
|
||
|
print("tAsA_x: "); print(tAsA_x.data()); print(" o "); print(tAsA_x.layout()); print("\n");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//
|
||
|
// Perform the TMA_LOAD
|
||
|
//
|
||
|
|
||
|
// INPUT: Group the REST_X modes and the TMA_X modes to easily iterate through the tiles
|
||
|
Tensor tAgA = group_modes<1,rank(tAgA_x)>(tAgA_x); // (TMA,REST)
|
||
|
Tensor tAsA = group_modes<1,rank(tAsA_x)>(tAsA_x); // (TMA,REST)
|
||
|
static_assert(size<1>(tAsA) == 1);
|
||
|
|
||
|
// OUTPUT: Group the CTA_TILE_X modes and REST_X modes for output
|
||
|
Tensor tBgB = group_modes<0,R>(group_modes<R,rank(gB)>(gB)); // (CTA_TILE, REST)
|
||
|
|
||
|
#if 0
|
||
|
if (thread0()) {
|
||
|
print("tAgA : "); print(tAgA.data()); print(" o "); print(tAgA.layout()); print("\n");
|
||
|
print("tAsA : "); print(tAsA.data()); print(" o "); print(tAsA.layout()); print("\n");
|
||
|
print("tBgB : "); print(tBgB.data()); print(" o "); print(tBgB.layout()); print("\n");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Loop over the TMA stages, using smem as our buffer
|
||
|
for (int stage = 0; stage < size<1>(tAgA); ++stage)
|
||
|
{
|
||
|
// Set the bytes transferred in this TMA transaction (may involve multiple issues)
|
||
|
constexpr int kTmaTransactionBytes = size(sA) * sizeof_bits_v<T> / 8;
|
||
|
|
||
|
if (threadIdx.x == 0)
|
||
|
{
|
||
|
/// Initialize shared memory barrier
|
||
|
tma_load_mbar[0] = 0;
|
||
|
cute::initialize_barrier(tma_load_mbar[0], 1 /*numThreads*/);
|
||
|
cute::set_barrier_transaction_bytes(tma_load_mbar[0], kTmaTransactionBytes);
|
||
|
|
||
|
copy(tma.with(tma_load_mbar[0]), tAgA(_,stage), tAsA(_,0));
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
/// Wait on the shared memory barrier until the phase bit flips from kPhaseBit value
|
||
|
constexpr int kPhaseBit = 0;
|
||
|
cute::wait_barrier(tma_load_mbar[0], kPhaseBit);
|
||
|
|
||
|
//
|
||
|
// Write out trivially smem -> gmem
|
||
|
//
|
||
|
|
||
|
//if (thread0()) {
|
||
|
// print_tensor(sA);
|
||
|
//}
|
||
|
|
||
|
for (int i = threadIdx.x; i < size(sA); i += blockDim.x) {
|
||
|
tBgB(i,stage) = sA(i);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class T, class TmaType = T, class CopyOp, class GMEM_Layout, class SMEM_Layout, class CTA_Tile>
|
||
|
auto
|
||
|
test_tma_load(CopyOp const& copy_op,
|
||
|
GMEM_Layout const& gmem_layout,
|
||
|
SMEM_Layout const& smem_layout,
|
||
|
CTA_Tile const& cta_tile)
|
||
|
{
|
||
|
using namespace cute;
|
||
|
thrust::host_vector<T> h_in(cosize(gmem_layout));
|
||
|
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i % 13); }
|
||
|
thrust::device_vector<T> d_in = h_in;
|
||
|
thrust::device_vector<T> d_out(h_in.size(), T(-1));
|
||
|
|
||
|
Tensor gA = make_tensor(d_in.data().get(), gmem_layout);
|
||
|
auto tma = make_tma_copy<TmaType>(copy_op, gA, smem_layout, cta_tile, Int<1>{});
|
||
|
//print(tma);
|
||
|
|
||
|
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
|
||
|
tma_test_device_cute<<<1, 128, smem_size>>>(
|
||
|
thrust::raw_pointer_cast(d_in.data()),
|
||
|
thrust::raw_pointer_cast(d_out.data()),
|
||
|
tma, cta_tile,
|
||
|
gmem_layout,
|
||
|
smem_layout);
|
||
|
|
||
|
thrust::host_vector<T> h_out = d_out;
|
||
|
|
||
|
// Validate the results, and tolerate the first 3 errors:
|
||
|
Tensor hA_in = make_tensor(h_in.data(), gmem_layout);
|
||
|
Tensor hA_out = make_tensor(h_out.data(), gmem_layout);
|
||
|
int count = 3;
|
||
|
for (int i = 0; i < cute::size(gmem_layout) && count > 0; ++i) {
|
||
|
EXPECT_EQ(hA_in(i), hA_out(i));
|
||
|
if (hA_in(i) != hA_out(i)) {
|
||
|
--count;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return tma;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
} // end namespace cutlass::test
|