2018-05-17 02:44:56 +08:00

2017-12-06 09:15:33 +08:00
2022-11-19 22:02:15 +08:00
# CUTLASS 2.11
2017-12-05 00:07:48 +08:00
2022-11-19 22:02:15 +08:00
_CUTLASS 2.11 - November 2022_
2018-06-27 04:57:39 +08:00
2018-10-27 05:38:46 +08:00
CUTLASS is a collection of CUDA C++ template abstractions for implementing
2021-09-21 02:02:22 +08:00
high-performance matrix-multiplication (GEMM) and related computations at all levels
and scales within CUDA. It incorporates strategies for hierarchical decomposition and
data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes
these "moving parts" into reusable, modular software components abstracted by C++ template
classes. These thread-wide, warp-wide, block-wide, and device-wide primitives can be specialized
2018-05-17 02:44:56 +08:00
and tuned via custom tiling sizes, data types, and other algorithmic policy. The
resulting flexibility simplifies their use as building blocks within custom kernels
2017-12-06 09:55:54 +08:00
and applications.
2017-12-06 09:50:15 +08:00
To support a wide variety of applications, CUTLASS provides extensive support for
2018-05-17 02:44:56 +08:00
mixed-precision computations, providing specialized data-movement and
2019-11-20 08:55:34 +08:00
multiply-accumulate abstractions for half-precision floating
2020-06-09 07:17:35 +08:00
point (FP16), BFloat16 (BF16), Tensor Float 32 (TF32),
2022-09-04 06:48:46 +08:00
single-precision floating point (FP32),
[FP32 emulation via tensor core instruction ](/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm ),
double-precision floating
2019-11-20 08:55:34 +08:00
point (FP64) types, integer data types (4b and 8b), and binary data types (1b).
2021-09-21 02:02:22 +08:00
CUTLASS demonstrates warp-synchronous matrix multiply operations
2019-11-20 08:55:34 +08:00
targeting the programmable, high-throughput _Tensor Cores_ implemented by
2020-06-09 07:17:35 +08:00
NVIDIA's Volta, Turing, and Ampere architectures.
2018-09-19 07:58:03 +08:00
2021-09-21 02:02:22 +08:00
CUTLASS implements high-performance Convolution via the implicit GEMM algorithm.
Implicit GEMM is the formulation of a convolution operation as a GEMM thereby taking advantage of
CUTLASS's modular GEMM pipeline.
This allows CUTLASS to build convolutions by reusing highly optimized warp-wide GEMM components and below.
2020-11-20 13:25:25 +08:00
2019-11-20 08:55:34 +08:00
See the [Quick Start Guide ](/media/docs/quickstart.md ) to get started quickly.
2019-04-20 07:54:52 +08:00
2020-11-20 13:25:25 +08:00
See the [functionality listing ](/media/docs/functionality.md ) for the list of operations
2020-06-09 07:17:35 +08:00
supported at each level of the execution model hierarchy.
2022-11-19 22:02:15 +08:00
# What's New in CUTLASS 2.11
CUTLASS 2.11 is an update to CUTLASS adding:
2023-01-11 05:10:02 +08:00
- [Stream-K ](/examples/47_ampere_gemm_universal_streamk ), which is a new general way to do split-K. It can not only improve performance, but can also significantly reduce the number of tile sizes that need to be profiled to find the best one.
2022-11-19 22:02:15 +08:00
- [Fused multi-head attention kernel ](/examples/41_fused_multi_head_attention ). It has two variants: one for fixed sequence lengths, and another for variable sequence lengths.
- [Dual GEMM ](/examples/45_dual_gemm ). It can run two GEMMs that share the same left input matrix in one kernel.
- Hopper improves [double precision matrix multiplication ](/test/unit/gemm/device/gemm_f64n_f64t_f64t_tensor_op_f64_sm90.cu ) by 2x compared to Ampere at iso-clocks. It is supported since CUDA 11.8.
- [BLAS3 ](/test/unit/gemm/device/hemm_cf64_cf64_cf64_tensor_op_f64_sm90.cu ) functions with Hoppers new double precision matrix multiplication instructions.
- [ELL Block Sparse GEMM ](/examples/43_ell_block_sparse_gemm ).
- [Optimized Group Conv ](/examples/42_ampere_tensorop_group_conv ).
- [Optimized DepthWise Conv ](/examples/46_depthwise_simt_conv2dfprop ).
- [Scripts ](/examples/44_multi_gemm_ir_and_codegen ) to fuse multiple back-to-back GEMM.
- [FP8 data type definition ](/include/cutlass/float8.h ) and [conversion routines ](/include/cutlass/numeric_conversion.h#L1274-2115 ).
- Updates and bugfixes from the community (thanks!). Big shout out to Meta's [xFormers ](https://github.com/facebookresearch/xformers ).
- **Deprecation announcement:** CUTLASS plans to deprecate the following in the next major release:
2021-11-20 05:26:35 +08:00
- Maxwell and Pascal GPU architectures
- Ubuntu 16.04
- CUDA 10.2
2022-12-22 00:57:55 +08:00
- C++ 11
2022-12-22 00:58:19 +08:00
- **Future requirement announcement:** CUTLASS plans to add the following requirements in the next major release:
2022-12-22 00:57:55 +08:00
- Minimum C++ standard - C++17
2021-11-20 05:26:35 +08:00
**See the [CHANGELOG ](CHANGELOG.md ) for a detailed listing of releases and updates.**
2018-09-19 07:58:03 +08:00
2017-12-06 11:53:11 +08:00
# Performance
2021-12-07 03:21:33 +08:00
< p align = "center" > < img src = /media/images/cutlass-2.8-gemm-performance.png > < / p >
2017-12-06 11:40:47 +08:00
2018-05-17 02:44:56 +08:00
CUTLASS primitives are very efficient. When used to construct device-wide GEMM kernels,
they exhibit performance comparable to cuBLAS for scalar GEMM
computations. The above figure shows CUTLASS performance relative to cuBLAS
2021-12-17 22:26:20 +08:00
for large matrix dimensions on an [NVIDIA A100 ](https://www.nvidia.com/en-us/data-center/a100/ ),
an [NVIDIA A2 ](https://www.nvidia.com/en-us/data-center/products/a2/ ),
an [NVIDIA TitanV ](https://www.nvidia.com/en-us/titan/titan-v/ ),
and an [NVIDIA GeForce 2080 Ti ](https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/ )
compiled with the [CUDA 11.5 Toolkit ](https://developer.nvidia.com/cuda-downloads ). Tensor Core operations are implemented using CUDA's
2019-11-20 08:55:34 +08:00
[mma instruction ](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma ).
2017-12-06 11:25:42 +08:00
2022-06-28 11:25:26 +08:00
< p align = "center" > < img src = /media/images/cutlass-2.9-implicit-gemm-performance.png > < / p >
When using CUTLASS building blocks to construct device-wide implicit gemm (Fprop, Dgrad, and Wgrad)
kernels, CUTLASS performance is also comparable to cuDNN when running Resnet-50 layers on an [NVIDIA A100 ](https://www.nvidia.com/en-us/data-center/a100/ )
as shown in the above figure. Tensor Core operations are still implemented using CUDA's
[mma instruction ](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma ).
2018-05-17 02:44:56 +08:00
# Compatibility
2017-12-05 00:07:48 +08:00
2022-11-19 22:02:15 +08:00
CUTLASS requires a C++11 host compiler and performs best when built with the [**CUDA 11.8 Toolkit** ](https://developer.nvidia.com/cuda-toolkit ).
2018-09-21 02:04:03 +08:00
2022-11-19 22:02:15 +08:00
It is also compatible with CUDA 11.x.
## Operating Systems
2018-09-21 02:04:03 +08:00
We have tested the following environments.
2017-12-05 00:07:48 +08:00
2018-05-17 02:44:56 +08:00
|**Operating System** | **Compiler** |
|-----------------|----------|
| Windows 10 | Microsoft Visual Studio 2015|
| | Microsoft Visual Studio 2017|
2022-04-24 03:02:38 +08:00
| | Microsoft Visual Studio 2019|
2020-06-09 07:17:35 +08:00
| Ubuntu 18.04 | GCC 7.5.0 |
2021-11-20 05:26:35 +08:00
| Ubuntu 20.04 | GCC 10.3.0 |
2022-11-19 22:02:15 +08:00
| Ubuntu 22.04 | GCC 11.2.0 |
2017-12-05 00:07:48 +08:00
2019-11-20 08:55:34 +08:00
Additionally, CUTLASS may be built with clang.
See [these instructions ](media/docs/quickstart.md#clang ) for more details.
2022-11-19 22:02:15 +08:00
## Hardware
2018-05-17 02:44:56 +08:00
CUTLASS runs successfully on the following NVIDIA GPUs, and it is expected to be efficient on
2021-11-20 05:26:35 +08:00
any Volta-, Turing-, or NVIDIA Ampere- architecture NVIDIA GPU.
2021-07-23 12:40:53 +08:00
2022-04-24 03:02:38 +08:00
|**GPU**|**CUDA Compute Capability**|**Minimum CUDA Toolkit**|**Minimum CUDA Toolkit Enabling Native Tensor Cores**|
2020-06-09 07:17:35 +08:00
|---|---|---|---|
|NVIDIA Tesla V100|7.0|9.2|10.1|
|NVIDIA TitanV|7.0|9.2|10.1|
|NVIDIA GeForce RTX 2080 TI, 2080, 2070|7.5|10.0|10.2|
|NVIDIA Tesla T4|7.5|10.0|10.2|
|NVIDIA A100|8.0|11.0|11.0|
2021-11-20 05:26:35 +08:00
|NVIDIA A10 |8.6|11.1|11.1|
2020-09-24 05:00:58 +08:00
|NVIDIA GeForce 3090|8.6|11.1|11.1|
2023-01-11 05:10:02 +08:00
|NVIDIA H100 PCIe|9.0|11.8|Double-precision: 11.8; Mixed precision: 12.0|
2022-04-24 03:02:38 +08:00
2019-11-20 08:55:34 +08:00
# Documentation
2020-09-24 05:00:58 +08:00
CUTLASS is described in the following documents and the accompanying
2019-11-20 08:55:34 +08:00
[Doxygen documentation ](https://nvidia.github.io/cutlass ).
- [Quick Start Guide ](/media/docs/quickstart.md ) - build and run CUTLASS
- [Functionality ](/media/docs/functionality.md ) - summarizes functionality available in CUTLASS
- [Efficient GEMM in CUDA ](media/docs/efficient_gemm.md ) - describes how GEMM kernels may be implemented efficiently in CUDA
- [GEMM API ](media/docs/gemm_api.md ) - describes the CUTLASS GEMM model and C++ template concepts
2020-11-20 13:25:25 +08:00
- [Implicit GEMM Convolution ](media/docs/implicit_gemm_convolution.md ) - describes 2-D and 3-D convolution in CUTLASS
2019-11-20 08:55:34 +08:00
- [Code Organization ](media/docs/code_organization.md ) - describes the organization and contents of the CUTLASS project
- [Terminology ](media/docs/terminology.md ) - describes terms used in the code
2019-11-21 02:42:15 +08:00
- [Programming Guidelines ](media/docs/programming_guidelines.md ) - guidelines for writing efficient modern CUDA C++
2019-11-20 08:55:34 +08:00
- [Fundamental types ](media/docs/fundamental_types.md ) - describes basic C++ classes used in CUTLASS to represent numeric quantities and arrays
- [Layouts ](media/docs/layout.md ) - describes layouts of matrices and tensors in memory
- [Tile Iterators ](media/docs/tile_iterator_concept.md ) - describes C++ concepts for iterating over tiles of matrices in memory
- [CUTLASS Profiler ](media/docs/profiler.md ) - command-line driven profiling application
- [CUTLASS Utilities ](media/docs/utilities.md ) - additional templates used to facilate rapid development
2022-11-19 22:02:15 +08:00
# Resources
2019-11-20 08:55:34 +08:00
We have also described the structure of an efficient GEMM in our talk at the
[GPU Technology Conference 2018 ](http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf ).
2017-12-05 00:07:48 +08:00
2022-11-19 22:02:15 +08:00
- [CUTLASS: Software Primitives for Dense Linear Algebra at All Levels and Scales within CUDA ](https://www.nvidia.com/en-us/on-demand/session/gtcsiliconvalley2018-s8854/ )
- [Developing CUDA Kernels to Push Tensor Cores to the Absolute Limit on NVIDIA A100 ](https://www.nvidia.com/en-us/on-demand/session/gtcsj20-s21745/ )
- [Accelerating Convolution with Tensor Cores in CUTLASS ](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31883/ )
- [Accelerating Backward Data Gradient by Increasing Tensor Core Utilization in CUTLASS ](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41996/ )
- [CUTLASS: Python API, Enhancements, and NVIDIA Hopper ](https://www.nvidia.com/en-us/on-demand/session/gtcfall22-a41131/ )
2018-05-17 02:44:56 +08:00
# Building CUTLASS
2017-12-05 00:07:48 +08:00
2018-05-17 02:44:56 +08:00
CUTLASS is a header-only template library and does not need to be built to be used by other
2019-11-20 08:55:34 +08:00
projects. Client applications should target CUTLASS's `include/` directory in their include
paths.
2017-12-05 00:07:48 +08:00
2019-11-20 08:55:34 +08:00
CUTLASS unit tests, examples, and utilities can be build with CMake starting version 3.12.
Make sure the `CUDACXX` environment variable points to NVCC in the CUDA Toolkit installed
on your system.
2018-05-17 02:44:56 +08:00
2020-11-20 13:25:25 +08:00
```bash
2019-11-20 08:55:34 +08:00
$ export CUDACXX=${CUDA_INSTALL_PATH}/bin/nvcc
2018-05-17 02:44:56 +08:00
```
2017-12-05 00:07:48 +08:00
2019-11-20 08:55:34 +08:00
Create a build directory within the CUTLASS project, then run CMake. By default CUTLASS will build kernels
2020-09-24 05:00:58 +08:00
for CUDA architecture versions 5.0, 6.0, 6.1, 7.0, 7.5, 8.0, and 8.6. To reduce compile time you can specify
2018-05-17 02:44:56 +08:00
the architectures to build CUTLASS for by changing the CMake configuration setting
`CUTLASS_NVCC_ARCHS` .
2017-12-05 00:07:48 +08:00
2020-11-20 13:25:25 +08:00
```bash
2018-05-17 02:44:56 +08:00
$ mkdir build & & cd build
2017-12-05 00:07:48 +08:00
2020-09-24 05:00:58 +08:00
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 # compiles for NVIDIA's Ampere Architecture
2018-05-17 02:44:56 +08:00
```
2017-12-05 00:07:48 +08:00
2019-11-20 08:55:34 +08:00
From the `build/` directory, compile and run the CUTLASS unit tests by building the target `test_unit` with make.
The unit tests are organized as several binaries mirroring the top-level namespaces of CUTLASS,
and they may be executed in parallel via make's `-j` command line argument.
2018-05-17 02:44:56 +08:00
2020-11-20 13:25:25 +08:00
```bash
2019-11-20 08:55:34 +08:00
$ make test_unit -j
2018-05-17 02:44:56 +08:00
...
...
...
[----------] Global test environment tear-down
2018-09-19 07:58:03 +08:00
[==========] 946 tests from 57 test cases ran. (10812 ms total)
[ PASSED ] 946 tests.
2018-05-17 02:44:56 +08:00
```
2019-11-20 08:55:34 +08:00
All tests should pass on supported platforms, though the exact number of tests may vary over time.
2018-05-17 02:44:56 +08:00
# Project Structure
2019-11-20 08:55:34 +08:00
CUTLASS is arranged as a header-only library along with Utilities, Tools, Examples, and unit tests.
[Doxygen documentation ](https://nvidia.github.io/cutlass ) provides a complete list of files, classes,
and template concepts defined in the CUTLASS project.
A detailed explanation of the source code organization may be found in the
[CUTLASS documentation ](media/docs/code_organization.md ), but several main components are summarized below.
2017-12-05 00:07:48 +08:00
2019-11-20 08:55:34 +08:00
## CUTLASS Template Library
2017-12-05 00:07:48 +08:00
2017-12-06 23:00:59 +08:00
```
2019-11-20 08:55:34 +08:00
include/ # client applications should target this directory in their build's include paths
cutlass/ # CUDA Templates for Linear Algebra Subroutines and Solvers - headers only
arch/ # direct exposure of architecture features (including instruction-level GEMMs)
2020-11-20 13:25:25 +08:00
conv/ # code specialized for convolution
2022-11-19 22:02:15 +08:00
epilogue/ # code specialized for the epilogue of gemm/convolution
2019-11-20 08:55:34 +08:00
gemm/ # code specialized for general matrix product computations
layout/ # layout definitions for matrices, tensors, and other mathematical objects in memory
platform/ # CUDA-capable Standard Library components
reduction/ # bandwidth-limited reduction kernels that do not fit the "gemm" model
2022-11-19 22:02:15 +08:00
thread/ # simt code that can be performed within a CUDA thread
2019-11-20 08:55:34 +08:00
transform/ # code specialized for layout, type, and domain transformations
* # core vocabulary types, containers, and basic numeric operations
2017-12-06 23:00:59 +08:00
```
2018-05-17 02:44:56 +08:00
2019-11-20 08:55:34 +08:00
### CUTLASS SDK Examples
2020-04-08 04:51:25 +08:00
[CUTLASS SDK examples ](/examples ) apply CUTLASS templates to implement basic computations.
2018-05-17 02:44:56 +08:00
2019-11-20 08:55:34 +08:00
### Tools
2020-11-20 13:25:25 +08:00
2019-11-20 08:55:34 +08:00
```
2018-05-17 02:44:56 +08:00
tools/
2019-11-20 08:55:34 +08:00
library/ # CUTLASS Instance Library - contains instantiations of all supported CUTLASS templates
2020-04-08 04:51:25 +08:00
include/
cutlass/
library/
2019-11-20 08:55:34 +08:00
profiler/ # CUTLASS Profiler - command-line utility for executing operations in the
# CUTLASS Library
util/ # CUTLASS Utilities - contains numerous helper classes for
include/ # manging tensors in device memory, reference
cutlass/ # implementations for GEMM, random initialization
util/ # of tensors, and I/O.
2018-05-17 02:44:56 +08:00
```
2019-11-20 08:55:34 +08:00
### Test
2018-05-17 02:44:56 +08:00
The `test/unit/` directory consist of unit tests implemented with Google Test that demonstrate
basic usage of Core API components and complete tests of the CUTLASS GEMM computations.
2019-11-20 08:55:34 +08:00
Instructions for building and running the Unit tests are described in the [Quickstart guide ](media/docs/quickstart.md ).
2018-09-19 07:58:03 +08:00
2018-05-17 02:44:56 +08:00
# Performance Profiling
2019-11-20 08:55:34 +08:00
The `tools/profiler/` directory contains a command-line utility for launching each of the GEMM kernels.
It can be built as follows:
2020-11-20 13:25:25 +08:00
```bash
2020-09-24 05:00:58 +08:00
$ make cutlass_profiler -j16
2019-11-20 08:55:34 +08:00
```
2020-11-23 10:11:37 +08:00
## Building all GEMM and Convolution kernels (_long_ build times)
2018-05-17 02:44:56 +08:00
2020-09-24 05:00:58 +08:00
By default, only one tile size is instantiated for each data type, math instruction, and layout.
2019-11-20 08:55:34 +08:00
To instantiate all, set the following environment variable when running CMake from an empty `build/` directory.
2020-09-24 05:00:58 +08:00
Beware, this results in *thousands* of kernels and long build times.
2020-11-20 13:25:25 +08:00
```bash
2019-11-20 08:55:34 +08:00
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 -DCUTLASS_LIBRARY_KERNELS=all
...
2020-09-24 05:00:58 +08:00
$ make cutlass_profiler -j16
```
2020-11-23 10:11:37 +08:00
## Building a subset of GEMM and Convolution kernels (_reduced_ build times)
2020-09-24 05:00:58 +08:00
To compile strictly one kernel or a small set of kernels, a comma-delimited list of kernel names with
2020-11-23 10:11:37 +08:00
wildcard characters may be used to reduce the set of kernels. The following examples show building exactly one
or a subset of kernels for NVIDIA Ampere and Turing architecture:
### Building a subset Tensor Core GEMM kernels
2020-09-24 05:00:58 +08:00
2020-11-23 10:11:37 +08:00
To compile a subset of Tensor Core GEMM kernels with FP32 accumulation and FP16 input targetting NVIDIA Ampere and Turing architecture,
use the below cmake command line:
2020-11-20 13:25:25 +08:00
```bash
2020-11-23 10:11:37 +08:00
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*gemm_f16_*_nt_align8
2020-09-24 05:00:58 +08:00
...
$ make cutlass_profiler -j16
2019-11-20 08:55:34 +08:00
```
2018-05-17 02:44:56 +08:00
2020-11-23 10:11:37 +08:00
Example command line for profiling a subset of Tensor Core GEMM kernels is as follows:
```bash
./tools/profiler/cutlass_profiler --kernels=cutlass_tensorop_s*gemm_f16_*_nt_align8 --m=3456 --n=4096 --k=4096
...
=============================
Problem ID: 1
Provider: CUTLASS
OperationKind: gemm
Operation: cutlass_tensorop_s1688gemm_f16_256x128_32x2_nt_align8
Status: Success
Verification: ON
Disposition: Passed
reference_device: Passed
cuBLAS: Passed
Arguments: --gemm_kind=universal --m=3456 --n=4096 --k=4096 --A=f16:column --B=f16:row --C=f32:column --alpha=1 \
--beta=0 --split_k_slices=1 --batch_count=1 --op_class=tensorop --accum=f32 --cta_m=256 --cta_n=128 \
--cta_k=32 --stages=2 --warps_m=4 --warps_n=2 --warps_k=1 --inst_m=16 --inst_n=8 --inst_k=8 --min_cc=75 \
--max_cc=1024
Bytes: 118489088 bytes
FLOPs: 115992428544 flops
Runtime: 1.55948 ms
Memory: 70.7616 GiB/s
Math: 74378.8 GFLOP/s
=============================
...
2018-05-17 02:44:56 +08:00
```
2020-11-23 10:11:37 +08:00
### Building one CUDA Core GEMM kernel
To compile one SGEMM kernel targetting NVIDIA Ampere and Turing architecture, use the below cmake command line:
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sgemm_128x128_8x2_nn_align1
...
$ make cutlass_profiler -j16
```
Example command line for profiling single SGEMM CUDA kernel is as follows:
```bash
2020-06-09 07:17:35 +08:00
$ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=3456 --n=4096 --k=4096
2019-11-20 08:55:34 +08:00
=============================
Problem ID: 1
2020-06-09 07:17:35 +08:00
Provider: CUTLASS
OperationKind: gemm
Operation: cutlass_simt_sgemm_128x128_8x2_nn_align1
Status: Success
Verification: ON
Disposition: Passed
2019-11-20 08:55:34 +08:00
2020-06-09 07:17:35 +08:00
cuBLAS: Passed
2019-11-20 08:55:34 +08:00
2020-06-09 07:17:35 +08:00
Arguments: --m=3456 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 --split_k_slices=1 \
--batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4 \
--warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024
2019-11-20 08:55:34 +08:00
2020-06-09 07:17:35 +08:00
Bytes: 180355072 bytes
FLOPs: 115992428544 flops
2019-11-20 08:55:34 +08:00
2020-06-09 07:17:35 +08:00
Runtime: 6.73655 ms
Memory: 24.934 GiB/s
2019-11-20 08:55:34 +08:00
2020-06-09 07:17:35 +08:00
Math: 17218.4 GFLOP/s
2020-11-23 10:11:37 +08:00
=============================
2018-05-17 02:44:56 +08:00
```
2020-11-23 10:11:37 +08:00
### Building a subset of Tensor Core Convolution kernels
To compile a subset of Tensor core convolution kernels implementing forward propagation (fprop) with FP32 accumulation
and FP16 input targetting NVIDIA Ampere and Turing architecture, use the below cmake command line:
2020-11-20 13:25:25 +08:00
```bash
2020-11-23 10:11:37 +08:00
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_tensorop_s*fprop_optimized_f16
2020-11-20 13:25:25 +08:00
...
$ make cutlass_profiler -j16
```
2020-11-23 10:11:37 +08:00
Example command line for profiling a subset of Tensor Core convolution kernels is as follows:
```bash
$ ./tools/profiler/cutlass_profiler --kernels=cutlass_tensorop_s*fprop_optimized_f16 --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3
...
=============================
Problem ID: 1
Provider: CUTLASS
OperationKind: conv2d
Operation: cutlass_tensorop_s16816fprop_optimized_f16_128x128_32x5_nhwc
Status: Success
Verification: ON
Disposition: Passed
reference_device: Passed
Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1 \
--stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f16:nhwc --Filter=f16:nhwc --Output=f32:nhwc \
--conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1 \
--eq_gemm_provider=none --op_class=tensorop --accum=f32 --cta_m=128 --cta_n=128 --cta_k=32 --stages=5 \
--warps_m=2 --warps_n=2 --warps_k=1 --inst_m=16 --inst_n=8 --inst_k=16 --min_cc=80 --max_cc=1024
Bytes: 1130659840 bytes
FLOPs: 118482796544 flops
Runtime: 0.711496 ms
Memory: 1479.99 GiB/s
Math: 166526 GFLOP/s
=============================
...
```
2020-11-20 13:25:25 +08:00
2020-11-23 10:11:37 +08:00
### Building one Convolution CUDA kernel
To compile and run one CUDA Core convolution kernel implementing forward propagation (fprop) with F32 accumulation
and FP32 input targetting NVIDIA Ampere and Turing architecture, use the below cmake command line:
2020-11-20 13:25:25 +08:00
```bash
2020-11-23 10:11:37 +08:00
$ cmake .. -DCUTLASS_NVCC_ARCHS='75;80' -DCUTLASS_LIBRARY_KERNELS=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc
2020-11-20 13:25:25 +08:00
...
$ make cutlass_profiler -j16
```
2020-11-23 10:11:37 +08:00
Example command line for profiling one CUDA Core convolution kernel:
2020-11-20 13:25:25 +08:00
```bash
$ ./tools/profiler/cutlass_profiler --kernels=cutlass_simt_sfprop_optimized_128x128_8x2_nhwc --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3
=============================
Problem ID: 1
Provider: CUTLASS
OperationKind: conv2d
Operation: cutlass_simt_sfprop_optimized_128x128_8x2_nhwc
Status: Success
Verification: ON
Disposition: Passed
reference_device: Passed
Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1 \
--stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f32:nhwc --Filter=f32:nhwc --Output=f32:nhwc \
--conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1 \
--eq_gemm_provider=none --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4 \
--warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024
Bytes: 2055798784 bytes
FLOPs: 118482796544 flops
2020-11-23 10:11:37 +08:00
Runtime: 7.34266 ms
Memory: 260.752 GiB/s
Math: 16136.2 GFLOP/s
2020-11-20 13:25:25 +08:00
2020-11-23 10:11:37 +08:00
=============================
2020-11-20 13:25:25 +08:00
```
2020-11-23 10:11:37 +08:00
## More Details on Compiling CUTLASS Kernels and CUTLASS Profiler
- Please follow the links for more CMake examples on selectively compiling CUTLASS kernels:
- [GEMM CMake Examples ](media/docs/quickstart.md#gemm-cmake-examples )
- [Implicit GEMM conovlution CMake Examples ](media/docs/quickstart.md#convolution-cmake-examples )
- [Further details about the CUTLASS Profiler are described here. ](media/docs/profiler.md )
2019-11-20 08:55:34 +08:00
2018-05-17 02:44:56 +08:00
# About
2019-11-20 08:55:34 +08:00
CUTLASS is released by NVIDIA Corporation as Open Source software under the
[3-clause "New" BSD license ](LICENSE.txt ).
# Contributors
2018-05-17 02:44:56 +08:00
2019-11-20 08:55:34 +08:00
The official list of CUTLASS developers and contributors is available here: [CONTRIBUTORS ](CONTRIBUTORS.md ).
2018-05-17 02:44:56 +08:00
# Copyright
2022-04-24 03:02:38 +08:00
Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
2018-05-17 02:44:56 +08:00
2018-05-17 03:50:10 +08:00
```
2022-04-24 03:02:38 +08:00
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2018-05-17 03:50:10 +08:00
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```
2019-11-20 08:55:34 +08:00