359 lines
12 KiB
Python
359 lines
12 KiB
Python
![]() |
#################################################################################################
|
||
|
#
|
||
|
# Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||
|
# SPDX-License-Identifier: BSD-3-Clause
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
||
|
# list of conditions and the following disclaimer.
|
||
|
#
|
||
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer in the documentation
|
||
|
# and/or other materials provided with the distribution.
|
||
|
#
|
||
|
# 3. Neither the name of the copyright holder nor the names of its
|
||
|
# contributors may be used to endorse or promote products derived from
|
||
|
# this software without specific prior written permission.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
#
|
||
|
#################################################################################################
|
||
|
|
||
|
"""
|
||
|
Definition of CuTe Layouts and functions to manipulate them
|
||
|
"""
|
||
|
|
||
|
from itertools import chain
|
||
|
from typing import Union
|
||
|
|
||
|
from .int_tuple import *
|
||
|
|
||
|
|
||
|
class LayoutBase:
|
||
|
pass
|
||
|
|
||
|
|
||
|
def is_layout(x):
|
||
|
return isinstance(x, LayoutBase)
|
||
|
|
||
|
|
||
|
class Layout(LayoutBase):
|
||
|
def __init__(self, _shape, _stride=None):
|
||
|
self.shape = _shape
|
||
|
if _stride is None:
|
||
|
self.stride = prefix_product(self.shape)
|
||
|
else:
|
||
|
self.stride = _stride
|
||
|
|
||
|
# operator ==
|
||
|
def __eq__(self, other):
|
||
|
return self.shape == other.shape and self.stride == other.stride
|
||
|
|
||
|
# operator len(L) (len [rank] like tuples)
|
||
|
def __len__(self):
|
||
|
if is_tuple(self.shape):
|
||
|
return len(self.shape)
|
||
|
else:
|
||
|
return 1
|
||
|
|
||
|
# operator () (map coord to idx)
|
||
|
def __call__(self, *args):
|
||
|
"""
|
||
|
Map a logical coordinate to a linear index (Coord has no Underscore slice operators)
|
||
|
OR
|
||
|
Slice the layout and return the sublayout (Coord has an Underscore slice op)
|
||
|
|
||
|
Follow the same behavior of `Layout::operator(Coord const&)` in cute C++
|
||
|
"""
|
||
|
if has_none(args):
|
||
|
if len(args) == 1:
|
||
|
return Layout(slice_(args[0], self.shape), slice_(args[0], self.stride))
|
||
|
else:
|
||
|
return Layout(slice_(args, self.shape), slice_(args, self.stride))
|
||
|
else:
|
||
|
if len(args) == 1:
|
||
|
return crd2idx(args[0], self.shape, self.stride)
|
||
|
else:
|
||
|
return crd2idx(args, self.shape, self.stride)
|
||
|
|
||
|
# operator [] (get-i like tuples)
|
||
|
def __getitem__(self, i):
|
||
|
if is_tuple(self.shape):
|
||
|
return Layout(self.shape[i], self.stride[i])
|
||
|
else:
|
||
|
assert i == 0
|
||
|
return Layout(self.shape, self.stride)
|
||
|
|
||
|
# size(layout) Size of the domain
|
||
|
def size(self):
|
||
|
return product(self.shape)
|
||
|
|
||
|
# cosize(layout) Size of the codomain
|
||
|
def cosize(self):
|
||
|
return tuple_max(tuple((1, elem_scale(self.shape, self.stride))))
|
||
|
|
||
|
# print and str
|
||
|
def __str__(self):
|
||
|
return f"{self.shape}:{self.stride}"
|
||
|
|
||
|
# error msgs and representation
|
||
|
def __repr__(self):
|
||
|
return f"Layout({self.shape},{self.stride})"
|
||
|
|
||
|
|
||
|
# Make Layout from a list of layouts (each layout it's own mode in the result)
|
||
|
def make_layout(*layouts):
|
||
|
if len(layouts) == 1 and not is_layout(layouts[0]):
|
||
|
layouts = layouts[0]
|
||
|
|
||
|
shape, stride = zip(*((a.shape,a.stride) for a in layouts))
|
||
|
return Layout(shape, stride)
|
||
|
|
||
|
|
||
|
# Size of the domain
|
||
|
def size(layout):
|
||
|
if is_layout(layout):
|
||
|
return layout.size()
|
||
|
return product(layout)
|
||
|
|
||
|
|
||
|
# Size of the codomain
|
||
|
def cosize(layout):
|
||
|
return layout.cosize()
|
||
|
|
||
|
|
||
|
# Layout coalesce -- flatten and combine as many modes as possible while preserving the int-to-int function
|
||
|
def coalesce(layout, profile=None):
|
||
|
if is_tuple(profile):
|
||
|
assert len(layout) >= len(profile)
|
||
|
return make_layout(chain((coalesce(layout[i], profile[i]) for i in range( 0,len(profile))),
|
||
|
(layout[i] for i in range(len(profile),len(layout)))))
|
||
|
|
||
|
result_shape = [1]
|
||
|
result_stride = [0]
|
||
|
for (shape,stride) in zip(flatten(layout.shape),flatten(layout.stride)):
|
||
|
# skip their shape-1s
|
||
|
if shape == 1:
|
||
|
continue
|
||
|
# replace our shape-1 with anything
|
||
|
elif result_shape[-1] == 1:
|
||
|
result_shape[-1] = shape
|
||
|
result_stride[-1] = stride
|
||
|
# merge modes if the shape*stride match
|
||
|
elif result_shape[-1] * result_stride[-1] == stride:
|
||
|
result_shape[-1] = result_shape[-1] * shape
|
||
|
# append a new mode
|
||
|
else:
|
||
|
result_shape.append(shape)
|
||
|
result_stride.append(stride)
|
||
|
|
||
|
if len(result_shape) == 1:
|
||
|
return Layout(result_shape[0], result_stride[0])
|
||
|
else:
|
||
|
return Layout(tuple(result_shape), tuple(result_stride))
|
||
|
|
||
|
|
||
|
# Layout filter -- replace all stride-0 modes with size-1 and then coalesce to remove them
|
||
|
def filter(layout, profile=None):
|
||
|
if is_tuple(profile):
|
||
|
assert len(layout) >= len(profile)
|
||
|
return make_layout(chain((filter(layout[i], profile[i]) for i in range( 0,len(profile))),
|
||
|
(layout[i] for i in range(len(profile),len(layout)))))
|
||
|
|
||
|
result_shape = []
|
||
|
result_stride = []
|
||
|
for (shape,stride) in zip(flatten(layout.shape),flatten(layout.stride)):
|
||
|
# skip their shape-1s and stride-0s
|
||
|
if not (shape == 1 or stride == 0):
|
||
|
result_shape.append(shape)
|
||
|
result_stride.append(stride)
|
||
|
|
||
|
if len(result_shape) == 0:
|
||
|
return Layout(1,0)
|
||
|
else:
|
||
|
return coalesce(Layout(tuple(result_shape), tuple(result_stride)))
|
||
|
|
||
|
|
||
|
# Layout composition
|
||
|
# Use tuples-of-layouts to perform this operation by-mode and None as no-op
|
||
|
def composition(layoutA, layoutB):
|
||
|
if layoutB is None:
|
||
|
return layoutA
|
||
|
elif is_int(layoutB):
|
||
|
return composition(layoutA, Layout(layoutB))
|
||
|
elif is_tuple(layoutB):
|
||
|
assert len(layoutA) >= len(layoutB)
|
||
|
return make_layout(chain((composition(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))),
|
||
|
(layoutA[i] for i in range(len(layoutB),len(layoutA)))))
|
||
|
elif is_tuple(layoutB.shape):
|
||
|
return make_layout(composition(layoutA, layoutB_i) for layoutB_i in layoutB)
|
||
|
|
||
|
if layoutB.stride == 0:
|
||
|
return Layout(layoutB.shape, 0)
|
||
|
else:
|
||
|
result_shape = []
|
||
|
result_stride = []
|
||
|
rest_shape = layoutB.shape
|
||
|
rest_stride = layoutB.stride
|
||
|
for (s, d) in zip(flatten(layoutA.shape)[:-1], flatten(layoutA.stride)[:-1]):
|
||
|
s1 = shape_div(s, rest_stride)
|
||
|
result_shape.append(min(s1,rest_shape))
|
||
|
result_stride.append(rest_stride * d)
|
||
|
rest_shape = shape_div(rest_shape, abs(s1))
|
||
|
rest_stride = shape_div(rest_stride, s)
|
||
|
|
||
|
result_shape.append(rest_shape)
|
||
|
result_stride.append(rest_stride * flatten(layoutA.stride)[-1])
|
||
|
|
||
|
return coalesce(Layout(tuple(result_shape), tuple(result_stride)))
|
||
|
|
||
|
|
||
|
# Layout complement
|
||
|
def complement(layout, max_idx=1):
|
||
|
if is_int(layout):
|
||
|
return complement(Layout(layout))
|
||
|
|
||
|
result_shape = []
|
||
|
result_stride = []
|
||
|
current_idx = 1
|
||
|
|
||
|
sorted_DS = sorted(zip(flatten(layout.stride), flatten(layout.shape)))
|
||
|
for (stride, shape) in sorted_DS:
|
||
|
if stride == 0 or shape == 1:
|
||
|
continue
|
||
|
|
||
|
in_bound = current_idx <= shape * stride
|
||
|
# To support symbolic value which can't be evaluated now
|
||
|
assert (type(in_bound) is not bool) or in_bound
|
||
|
|
||
|
result_shape.append(stride // current_idx)
|
||
|
result_stride.append(current_idx)
|
||
|
current_idx = shape * stride
|
||
|
|
||
|
result_shape.append((max_idx + current_idx - 1) // current_idx) # ceil_div
|
||
|
result_stride.append(current_idx)
|
||
|
|
||
|
return coalesce(Layout(tuple(result_shape), tuple(result_stride)))
|
||
|
|
||
|
|
||
|
# Layout right inverse
|
||
|
def right_inverse(layout):
|
||
|
if layout is None:
|
||
|
return None
|
||
|
elif is_int(layout):
|
||
|
return Layout(layout)
|
||
|
|
||
|
result_shape = []
|
||
|
result_stride = []
|
||
|
current_idx = 1
|
||
|
|
||
|
flat_shape = flatten(layout.shape)
|
||
|
flat_stride = flatten(layout.stride)
|
||
|
sorted_DSA = sorted(zip(flat_stride, flat_shape, prefix_product(flat_shape)))
|
||
|
for (stride,shape,rstride) in sorted_DSA:
|
||
|
if shape == 1:
|
||
|
continue
|
||
|
if current_idx != stride:
|
||
|
break
|
||
|
|
||
|
result_shape.append(shape)
|
||
|
result_stride.append(rstride)
|
||
|
current_idx = shape * stride
|
||
|
|
||
|
return coalesce(Layout(tuple(result_shape), tuple(result_stride)))
|
||
|
|
||
|
|
||
|
# Layout left inverse
|
||
|
def left_inverse(layout):
|
||
|
if layout is None:
|
||
|
return None
|
||
|
elif is_int(layout):
|
||
|
return Layout(layout)
|
||
|
return right_inverse(make_layout(layout, complement(layout)))
|
||
|
|
||
|
|
||
|
# Split a layout by the composition of B and the "rest"
|
||
|
# Use tuples-of-layouts to perform this operation by-mode and None as no-op
|
||
|
def logical_divide(layoutA, layoutB):
|
||
|
if layoutB is None:
|
||
|
return layoutA
|
||
|
elif is_int(layoutB):
|
||
|
return logical_divide(layoutA, Layout(layoutB))
|
||
|
elif is_tuple(layoutB):
|
||
|
assert len(layoutA) >= len(layoutB)
|
||
|
return make_layout(chain((logical_divide(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))),
|
||
|
(layoutA[i] for i in range(len(layoutB),len(layoutA)))))
|
||
|
|
||
|
return composition(layoutA, make_layout(layoutB, complement(layoutB, size(layoutA))))
|
||
|
|
||
|
|
||
|
# Reproduce a layoutA over a layoutB
|
||
|
# Use tuples-of-layouts to perform this operation by-mode and None as no-op
|
||
|
def logical_product(layoutA, layoutB):
|
||
|
if layoutB is None:
|
||
|
return layoutA
|
||
|
elif is_int(layoutB):
|
||
|
return logical_divide(layoutA, Layout(layoutB))
|
||
|
elif is_tuple(layoutB):
|
||
|
assert len(layoutA) >= len(layoutB)
|
||
|
return make_layout(chain((logical_product(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))),
|
||
|
(layoutA[i] for i in range(len(layoutB),len(layoutA)))))
|
||
|
|
||
|
return make_layout(layoutA, composition(complement(layoutA, size(layoutA)*cosize(layoutB)), layoutB));
|
||
|
|
||
|
|
||
|
# Gather the modes from a hierarchical logical_divide or logical_product
|
||
|
def hier_unzip(splitter, layoutA, layoutB):
|
||
|
if layoutB is None:
|
||
|
return make_layout(Layout(1,0), layoutA)
|
||
|
elif is_tuple(layoutB):
|
||
|
assert len(layoutA) >= len(layoutB)
|
||
|
# A layout with shape ((A,a),(B,b),(C,c))
|
||
|
split = make_layout(hier_unzip(splitter, layoutA[i], layoutB[i]) for i in range(0,len(layoutB)))
|
||
|
# Gather to shape ((A,B,C,...),(a,b,c,...,y,z))
|
||
|
return make_layout(make_layout( split[i][0] for i in range( 0,len(layoutB))),
|
||
|
make_layout(chain((split[i][1] for i in range( 0,len(layoutB))),
|
||
|
(layoutA[i] for i in range(len(layoutB),len(layoutA))))))
|
||
|
|
||
|
# splitter must return a rank-2 layout
|
||
|
return splitter(layoutA, layoutB)
|
||
|
|
||
|
|
||
|
# Apply logical divide hierarchically and gather the split modes into two modes
|
||
|
def zipped_divide(layoutA, layoutB):
|
||
|
return hier_unzip(logical_divide, layoutA, layoutB)
|
||
|
|
||
|
|
||
|
# Perform logical divide hierarchically and gather tiles (B-layouts) into a new mode
|
||
|
def tiled_divide(layoutA, layoutB):
|
||
|
result = zipped_divide(layoutA, layoutB)
|
||
|
return make_layout([result[0]] + [result[1][i] for i in range(len(result[1]))])
|
||
|
|
||
|
|
||
|
# Apply logical product hierarchically and gather the split modes into two modes
|
||
|
def zipped_product(layoutA, layoutB):
|
||
|
return hier_unzip(logical_product, layoutA, layoutB)
|
||
|
|
||
|
|
||
|
# Perform logical product hierarchically and gather tiles (B-layouts) into a new mode
|
||
|
def tiled_product(layoutA, layoutB):
|
||
|
result = zipped_product(layoutA, layoutB)
|
||
|
return make_layout([result[0]] + [result[1][i] for i in range(len(result[1]))])
|
||
|
|
||
|
|
||
|
def slice_and_offset(crd: tuple,
|
||
|
layout: Layout):
|
||
|
return (Layout(slice_(crd, layout.shape), slice_(crd, layout.stride)),
|
||
|
crd2idx(crd, layout.shape, layout.stride))
|