* [First layer Convolution kernels](/test/unit/conv/device/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) specialized for small channel counts and reduced alignment
* [Few channels](/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_few_channels.h) specialization for reduced alignment capabilities
* [Fixed channels](/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_fixed_channels.h) further specialized when channel count perfectly matches the access vector size
* [CUTLASS Python](/example/40_cutlass_py) demonstrating JIT compilation of CUTLASS kernels and a Python-based runtime using [CUDA Python](https://developer.nvidia.com/cuda-python)
* [Python-based runtime](/tools/library/scripts/rt.py) interoperable with existing emitters
* [Gather and Scatter Fusion with GEMM](/examples/36_gather_scatter_fusion) can gather inputs and scatters outputs based on indices vectors in the same GEMM kernel.
* It can select random rows in a row major matrix.
* It can select random columns in a column major matrix.
* [Back-to-back GEMM/CONV](examples/13_two_tensor_op_fusion) fully supports buffering the previous GEMM/CONV results in the shared memory for the latter one to use. It can eliminate register spill when the tile size is big.
* Supported kernels: GEMM and CONV.
* Supported types: fp16 and int8.
* Supported architectures: Turing and Ampere.
* [Transposed Convolution](/examples/34_transposed_conv2d) (a.k.a Deconvolution) support which reuses Dgrad implementation.
* [Utility functions](/tools/util/include/cutlass/util) that can pad NHWC and convert between NCHW and NHWC.
* [Small alignment implicit gemm](https://github.com/NVIDIA/cutlass/issues/242) support for Fprop/Dgrad/Wgrad so that padding is no longer mandated to use tensor cores in these kernels.
* Epilogue enhancement:
* Eliminate bank conflicts in int8 tensor core kernels.
* Half2 usage if epilogue compute type is fp16.
* More activation functions: Silu, Hardswish.
* New elementwise fusion pattern for [residual block](/include/cutlass/epilogue/thread/linear_combination_residual_block.h).
* [Parallel GEMM splitk](https://github.com/NVIDIA/cutlass/pull/277) support in the CUTLASS profiler.
* [Implicit GEMM Convolution fusion](/examples/13_two_tensor_op_fusion/) supports staging 1st convolution's output accumulator in the shared memory on Turing. This allows more flexible warp tile sizes and less regsiter pressue.
* Optimal performance using [**CUDA 11.5**](https://developer.nvidia.com/cuda-downloads)
* Use these when accumulation and epilogue compute types are all `cutlass::half_t`
* Tuning and bug fixes to [fused GEMM + GEMM example](/examples/13_two_tensor_op_fusion/)
* Support for smaller than 128b aligned Convolutions: [see examples](test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu#L272)
* Caching of results to accelerate Convolution [unit tests](test/unit/conv/device/cache_testbed_output.h)
* Can be enabled or disabled by running `cmake .. -DCUTLASS_TEST_ENABLE_CACHED_RESULTS=OFF`
* Corrections and bug fixes reported by the CUTLASS community
* Quaternion-valued GEMM and Convolution in single- and double-precision (targeting CUDA Cores)
* Updates to [quaternion.h](/include/cutlass/quaternion.h) and [functional.h](/include/cutlass/functional.h)
* SDK Example for [GEMM](/examples/21_quaternion_gemm/quaternion_gemm.cu) and [Convolution](/examples/22_quaternion_gemm/quaternion_conv.cu)
* [Unit tests for GEMM](/test/unit/gemm/device/simt_qgemm_nn_sm50.cu) and [Convolution](/test/unit/conv/device/conv2d_fprop_implicit_gemm_qf32nhwc_qf32nhwc_qf32nhwc_simt_f32_sm50.cu)
* Many improvements to the epilogue.
* Provide an [option](/include/cutlass/epilogue/threadblock/epilogue.h) to not fully unroll the epilogue to reduce the code size and improve the performance when using complicated elementwise operations
* Performance improvement for FP16 tensor core kernels
* [Optimized tile iterators](include/cutlass/conv/threadblock/conv3d_fprop_activation_tile_access_iterator_optimized.h) using precomputed delta table for 3-D convolution
* Full coverage of [forward](test/unit/conv/device/conv3d_fprop_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) and [backwards](test/unit/conv/device/conv3d_dgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) passes for 3D convolution
* Direct access to Sparse Tensor Cores and maximum performance via [`mma.sp.sync`](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends)
* Fast SGEMM targeting GeForce RTX 30-series CUDA Cores
* Minor Features:
* [Activation functions](/include/cutlass/epilogue/thread/activation.h) such as [GeLU](/include/cutlass/epilogue/thread/linear_combination_gelu.h) and [Sigmoid](/include/cutlass/epilogue/thread/linear_combination_sigmoid.h)
* Small [matrix](/include/cutlass/matrix.h) and [quaternion](/include/cutlass/quaternion.h) template classes in device code
* Maximum performance via [`mma.sync`](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends)
* Tensor Float 32, BFloat16, and double-precision data types
* Mixed integer data types (int8, int4, bin1)
* Asynchronous copy for deep software pipelines via [`cp.async`](https://docs.nvidia.com/cuda/parallel-thread-execution)