cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm90.py

139 lines
6.4 KiB
Python
Raw Normal View History

2023-01-24 09:55:28 +08:00
#################################################################################################
#
# Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
from functools import partial
import pycutlass
from pycutlass import *
from pycutlass import library
from pycutlass.test import *
import unittest
from pycutlass.test.utils import LayoutCombination, get_name
from pycutlass.test.gemm_testbed import test_all_gemm
from pycutlass.utils.device import device_cc
name_fn = partial(get_name, element_a=cutlass.bfloat16, element_b=cutlass.bfloat16, arch=90)
def add_test(cls, layouts, alignments, element_output, element_accumulator, element_epilogue,
cluster_shape, threadblock_shape, stages, opclass, persistent=False):
"""
Create a test-running function with the given specification and set it as a method of `cls`.
:param cls: class to which the generated method will be added
:type cls: type
:param layouts: indexable container of layouts of A, B, and C operands
:param alignments: indexable container of alignments of A, B, and C operands
2023-01-24 09:55:28 +08:00
:param element_output: data type of the output element
:param element_accumulator: data type used in accumulation
:param element_epilogue: data type used in computing the epilogue
:param cluster_shape: indexable container of dimensions of threadblock cluster to be launched
:param threadblock_shape: indexable container of dimensions of threadblock tiles
:param stages: number of pipeline stages to use in the kernel
:type stages: int
:param opclass: class of operation being performed (e.g., SIMT, Tensor Core)
:type opclass: cutlass.OpClass
:param persistent: whether this is a persistent warp-specialized kernel
:type persistent: bool
"""
def run(self):
"""
Dynamically-generated function that constructs a GEMM operation and verifies it against
multiple test cases.
"""
element_A = cutlass.bfloat16
element_B = cutlass.bfloat16
inst_shape = [1, 1, 1] if opclass == cutlass.OpClass.Simt else None
warp_count = [2, 2, 1] if opclass == cutlass.OpClass.Simt else None
math_inst = MathInstruction(
instruction_shape=inst_shape,
element_a=element_A, element_b=element_B, element_accumulator=element_accumulator,
opcode_class=opclass, math_operation=MathOperation.multiply_add
)
tile_description = TileDescription(
threadblock_shape=threadblock_shape,
cluster_shape=cluster_shape,
stages=stages, warp_count=warp_count,
math_instruction=math_inst,
persistent=persistent
)
A = TensorDescription(element=element_A, layout=layouts[0], alignment=alignments[0])
B = TensorDescription(element=element_B, layout=layouts[1], alignment=alignments[1])
C = TensorDescription(element=element_output, layout=layouts[2], alignment=alignments[2])
epilogue_functor = LinearCombination(C.element, C.alignment, math_inst.element_accumulator, element_epilogue)
swizzling_functor = cutlass.IdentitySwizzle1
operation = GemmOperationUniversal(
arch=90, tile_description=tile_description, A=A, B=B, C=C,
epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor)
self.assertTrue(test_all_gemm(operation, "universal"))
if persistent:
suffix = "_persistent"
else:
suffix = ""
name = name_fn(layouts, alignments, element_output, element_accumulator,
element_epilogue, cluster_shape, threadblock_shape, stages, opclass=opclass, suffix=suffix)
setattr(cls, name, run)
return run
@unittest.skipIf(device_cc() < 90, "Device compute capability is insufficient for SM90 tests.")
class GemmBF16Sm90(unittest.TestCase):
"""
Wrapper class to which tests will be added dynamically in __main__
"""
pass
add_test_tensorop = partial(add_test, opclass=cutlass.OpClass.TensorOp)
add_test_simt = partial(add_test, opclass=cutlass.OpClass.Simt)
add_test_tensorop(GemmBF16Sm90, LayoutCombination.NNN, [8, 8, 8], cutlass.bfloat16, cutlass.float32, cutlass.float32, [1, 1, 1], [128, 128, 32], 3)
add_test_tensorop(GemmBF16Sm90, LayoutCombination.NNN, [4, 4, 8], cutlass.bfloat16, cutlass.float32, cutlass.float32, [1, 1, 1], [128, 128, 32], 5)
add_test_tensorop(GemmBF16Sm90, LayoutCombination.TNN, [8, 8, 8], cutlass.bfloat16, cutlass.float32, cutlass.float32, [2, 1, 1], [128, 128, 32], None)
add_test_tensorop(GemmBF16Sm90, LayoutCombination.TNN, [8, 8, 8], cutlass.bfloat16, cutlass.float32, cutlass.float32, [2, 1, 1], [128, 128, 32], None, persistent=True)
add_test_simt(GemmBF16Sm90, LayoutCombination.NNN, [1, 1, 1], cutlass.bfloat16, cutlass.float32, cutlass.float32, [1, 1, 1], [128, 128, 8], 2)
if __name__ == '__main__':
pycutlass.get_memory_pool(2**30, 2**30)
unittest.main()