* New warp-specialized persistent FP8 GEMM kernel [kernel schedules](/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_cooperative.hpp) and [mainloops](/include/cutlass/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized_fp8.hpp) targeting Hopper architecture that achieve great performance with TMA, WGMMA, and threadblock clusters. An example showcasing [Hopper warp-specialized FP8 GEMMs](/examples/54_hopper_fp8_warp_specialized_gemm). FP8 GEMMs come with a fast accumulation mode. When enabled, problem execution might be faster but at the cost of lower accuracy because intermediate results will not periodically be promoted to a higher precision.
* New [Epilogue Visitor Tree (EVT)](/examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu) support for Hopper TMA epilogues. EVTs allows for user-defined customized epilogue fusion patterns without having to write a new epilogue.
* [Stream-K](/include/cutlass/gemm/kernel/sm90_tile_scheduler_stream_k.hpp) feature for Hopper. Note that this is only a functional implementation of stream-K, and should not be used for performance comparison. Optimizations are expected in a future release.
* Improved CTA rasterization and support for CTA swizzling for Hopper kernels using the [Tile Scheduler](/include/cutlass/gemm/kernel/sm90_tile_scheduler.hpp).
* [Hopper GEMM+Permute](/examples/53_hopper_gemm_permute/53_hopper_gemm_permute.cu), an example of fusing tensor reordering (permutation) with GEMM mainloop or epilogue.
* New CUTLASS 2D Convolution Python interface. New [example](/examples/python/03_basic_conv2d.ipynb) here.
* Support for Windows (MSVC) builds. Tested with Visual Studio 2019 v16.11.27 on Windows 10.0.
* Optimal performance using [**CUDA 12.2u1**](https://developer.nvidia.com/cuda-downloads)
* Updates and bugfixes from the community (thanks!)
* New CUTLASS Python interface that aims to provide an ease-of-use interface for instantiating, emitting, compiling, and running CUTLASS kernels via Python. More details [here](/python/README.md) and new [examples](/examples/python).
* New [efficient epilogues](test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_cluster_warpspecialized_cooperative.cu#L783) using TMA for Hopper.
* Support for [fused epilogues](test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_cluster_warpspecialized_cooperative_bias_elementwise.cu), such Bias, ReLU and GELU, using the new efficient epilogues.
* New [warp-specialized TensorFloat-32 (TF32) GEMM kernels](test/unit/gemm/device/sm90_gemm_tf32_tf32_f32_tensor_op_f32_gmma_rs_cluster_warpspecialized.cu) targeting Hopper TMA.
* New [*warp-specialized persistent cooperative*](include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_cooperative.hpp) kernel design that allows for larger tile sizes and improves performance on Hopper.
* An [example](examples/51_hopper_gett) showcasing GEMM-Like Tensor-Tensor Contraction (GETT) capability on Hopper.
* Epilogue builders. Similar to mainloop builders (see [example 49](/examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu)), epilogue builders aim to generate the best-possible epilogue while exposing incremental opt-ins for greater customization.
* Profiler support for overriding kernel and epilogue builder auto schedules for 3.x API kernels, allowing specific policies to be run in the CUTLASS profiler.
* Performance optimizations for the [*warp-specialized persistent ping-pong*](include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_pingpong.hpp) kernel.
* Changes to the [GEMM API 3.x](media/docs/gemm_api_3x.md), involving the host-facing arguments and the underlying `Params` structs.
* [FMHA Backward Pass](examples/41_fused_multi_head_attention/fused_multi_head_attention_backward.cu) from Meta xFormers.
* [Streamk GEMM with Broadcast](examples/47_ampere_gemm_universal_streamk/ampere_gemm_universal_streamk_broadcast.cu) enables epilogue broadcast with StreamK GEMM.
* [Batched B2B GEMM](examples/13_two_tensor_op_fusion) now can run multiple Back-to-Back GEMM with the same problem size in parallel.
* [Batched Strided GEMV](test/unit/gemm/device/gemv.cu) support both row major and column major input matrix.
* [Permute + GEMM fusion](examples/39_gemm_permute) can fuse Permute with following GEMM now. Before, we only support fusing GEMM with Permute in the epilogue.
* [CuTe](/media/docs/cute/00_quickstart.md), a [new core library and backend](/include/cute) for CUTLASS 3.0 that defines a single Layout vocabulary type and an associated algebra of layouts for a much more expressive and composable abstraction for tensors, sets of parallel agents, and operations by said agents on tensors.
* [A new conceptual operation hierarchy](media/docs/cutlass_3x_design.md) that replaces the architecture-centric hierarchy of CUTLASS 2.x and [documentation for CUTLASS 3.0's GEMM API changes](/media/docs/gemm_api_3x.md).
* Strict API backwards compatibility that exposes both 2.x and 3.x API kernels through the same [`device::GemmUniversalAdapter`](include/cutlass/gemm/device/gemm_universal_adapter.h) and [`kernel::GemmUniversal`](include/cutlass/gemm/kernel/gemm_universal.hpp) types, allowing users to include both APIs in the same translation units. More information can be found in the [3.x backwards compatibility section](media/docs/cutlass_3x_backwards_compatibility.md).
* Updates to [Functionality](media/docs/functionality.md) which directs users on which kernels are supported via CUTLASS-2 and CUTLASS-3.
* Updates to [Compatibility](/README.md#compatibility) Section regarding supported compilers, operating systems, CUDA Toolkits, Hardware Architectures and [Target Architecture](/README.md#Target-Architecture).
* New warp-specialized GEMM [kernel schedules](include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized.hpp) and [mainloops](include/cutlass/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized.hpp) targeting Hopper architecture that achieve great performance with TMA, WGMMA, and threadblock clusters.
* Extensions to CUTLASS profiler to support threadblock cluster shapes in library and profiler tile configurations.
* [CUTLASS library integration](/tools/library/src/gemm_operation_3x.hpp) for 3.x API kernels built through the new `CollectiveBuilder` API, enabling CUTLASS profiler.
* Support for [Hopper GEMMs](examples/48_hopper_warp_specialized_gemm) through the new 3.0 API with CuTe-based exposure of the Hopper [Tensor Memory Accelerator](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor) and [WGMMA Tensor Core](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-instructions) features.
* Set of examples that demonstrate the usage of the new 3.0 API to easily build GEMM kernels targeting Hopper: examples [48](examples/48_hopper_warp_specialized_gemm), [49](examples/49_hopper_gemm_schedules_with_collective_builder), and [50](examples/50_hopper_gemm_with_epilogue_swizzle).
* [Stream-K](/examples/47_ampere_gemm_universal_streamk), which is a new general way to do split-K. It can not only improve performance, but can also significantly reduce the number of tile sizes that need to be profiled to find the best one.
* [Fused multi-head attention Kernel](/examples/41_fused_multi_head_attention). It has two variants: one uses batched GEMM for the fixed sequence length, and the other one uses group GEMM for the variable sequence length. Both versions just need one kernel.
* [Dual GEMM](/examples/45_dual_gemm), which can fuse A x B and A x C into one kernel. Two GEMMs has no producer-consumer dependency.
* Hopper improves [double precision matrix multiplication](/test/unit/gemm/device/gemm_f64n_f64t_f64t_tensor_op_f64_sm90.cu) by 2x compared to Ampere at iso-clocks. It is supported since CUDA 11.8.
* [BLAS3](/test/unit/gemm/device/hemm_cf64_cf64_cf64_tensor_op_f64_sm90.cu) functions with Hoppers new double precision matrix multiplication instructions.
* [ELL Block Sparse GEMM](/examples/43_ell_block_sparse_gemm), which uses an [ELL matrix](https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/) to describe the sparsity of A matrix. B and output matrices are still dense. The block size can be arbitary.
* Optimized [Group Conv](/examples/42_ampere_tensorop_group_conv) for SingleGroup mode, which requires that the output channel per group is a multiple of Threadblock tile N.
* [Optimized DepthWise Conv](/examples/46_depthwise_simt_conv2dfprop/depthwise_simt_conv2dfprop.cu). Two new modes are added
* [kOptimized](/test/unit/conv/device/depthwise_conv2d_fprop_direct_conv_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) - use direct conv to compute instead of implicit GEMM.
* The restrictions are: 1) input ,output channel and group number should be multiple of (128 / sizeof(input element)). 2) The input filter size should be the same as the template parameter configuration.
* [kFixedStrideDilation](/test/unit/conv/device/depthwise_conv2d_fprop_direct_conv_fixed_stride_dilation_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) - which puts stride and dilation into templates to further improve the performance. In this mode, kernel persistents some inputs into register to squeeze more performance, so large filter/stride/dilation is not recommanded.
* The restrictions are: 1) input, output channel and group number should be multiple of (128 / sizeof(input element)). 2) input filter size, stride, dilation should same as the template parameter configuration.
* [Scripts](/examples/44_multi_gemm_ir_and_codegen) to fuse multiple back-to-back GEMM. Its implementation was discussed in a GTC'22 Spring [talk](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41606/).
* [FP8 data type definition](/include/cutlass/float8.h) and [conversion routines](/include/cutlass/numeric_conversion.h#L1274-2115).
* Updates and bugfixes from the community (thanks!). Big shout out to Meta's [xFormers](https://github.com/facebookresearch/xformers).
* **Deprecation announcement:** CUTLASS plans to deprecate the following:
* [CUTLASS Python](/examples/40_cutlass_py) now supports GEMM, CONV, Group GEMM for different data types as well as different epilogue flavours.
* Optimizations for CUTLASS's [Grouped GEMM](examples/24_gemm_grouped/gemm_grouped.cu) kernel. Threadblock scheduling part is improved. Some computation can be moved to the host side if applicable. [Grouped Syr2k](examples/38_syr2k_grouped/syr2k_grouped.cu) kernels are added, too.
* Optimizations for [GEMM+Softmax](examples/35_gemm_softmax). All the reduction computation is fused into the previous GEMM. More template arguments are provided to fine tune the performance.
* [Grouped GEMM for Multihead Attention](examples/41_multi_head_attention). This general group gemm based MHA does not require the sequence length of all GEMMs to be the same which makes it most useful for natural language processing.
* [GEMM + Layer norm fusion for Ampere](examples/37_gemm_layernorm_gemm_fusion/) splits the layernorm into two parts and both of them can be fused into the GEMMs before and after separately. In addition to use square sum to compute variance of layernorm, [Shift-K](https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data) is provided if square sum raise numerical issues.
* [GEMM Epilogue Permutation Fusion](examples/39_gemm_permute) can apply user provided permutation layout mapping in the GEMM epilogue.
* [Grouped convolution targeting implicit GEMM](test/unit/conv/device/group_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) introduces the first group convolution implementation to CUTLASS. It is an Analytical implementation, not an Optimized. The restrictions are: 1) input and output channel number should be multiple of group number. 2) split-K is not supported. The implementation has 2 modes:
* kSingleGroup: output channel per group is multiple of Threadblock tile N.
* kMultipleGroup: Threadblock tile N is multiple of output channel per group.
* [Depthwise separable convolution](test/unit/conv/device/depthwise_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu) introduces the first depthwise convolution which is also Analytical for now. The restrictions are: 1) SIMT only 2) No split-K 3) input channel equals to output channel equals to group number.
* Standalone [Layernorm](/tools/util/include/cutlass/util/device_layernorm.h) and [Pooling](/tools/util/include/cutlass/util/device_nhwc_pooling.h) kernels.
* [Back-to-back GEMM/CONV](examples/13_two_tensor_op_fusion) relaxes the requirement that the first GEMM K dimension needs to be the multiple of Threadblock Tile K dimension.
* Optimal performance using [**CUDA 11.6u2**](https://developer.nvidia.com/cuda-downloads)
* [First layer Convolution kernels](/test/unit/conv/device/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu) specialized for small channel counts and reduced alignment
* [Few channels](/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_few_channels.h) specialization for reduced alignment capabilities
* [Fixed channels](/include/cutlass/conv/threadblock/conv2d_fprop_activation_tile_access_iterator_fixed_channels.h) further specialized when channel count perfectly matches the access vector size
* [CUTLASS Python](/examples/40_cutlass_py) demonstrating JIT compilation of CUTLASS kernels and a Python-based runtime using [CUDA Python](https://developer.nvidia.com/cuda-python)
* [Gather and Scatter Fusion with GEMM](/examples/36_gather_scatter_fusion) can gather inputs and scatters outputs based on indices vectors in the same GEMM kernel.
* It can select random rows in a row major matrix.
* It can select random columns in a column major matrix.
* [Back-to-back GEMM/CONV](examples/13_two_tensor_op_fusion) fully supports buffering the first GEMM/CONV results in the shared memory for the latter one to use. It can eliminate register spill when the tile size is big. Additionally, bias vector add is supported in the first GEMM/CONV.
* [Transposed Convolution](/examples/34_transposed_conv2d) (a.k.a Deconvolution) support which reuses Dgrad implementation.
* [Utility functions](/tools/util/include/cutlass/util) that can pad NHWC and convert between NCHW and NHWC.
* [Small alignment implicit gemm](https://github.com/NVIDIA/cutlass/issues/242) support for Fprop/Dgrad/Wgrad so that padding is no longer mandated to use tensor cores in these kernels.
* Epilogue enhancement:
* Eliminate bank conflicts in int8 tensor core kernels.
* [Group GEMM](/examples/24_gemm_grouped) thread block number calculation fix which helps to launch the intended number of threadblocks to fully occupy the GPUs.
* [Implicit GEMM Convolution fusion](/examples/13_two_tensor_op_fusion/) supports staging 1st convolution's output accumulator in the shared memory on Turing. This allows more flexible warp tile sizes and less regsiter pressue.
* Optimal performance using [**CUDA 11.5**](https://developer.nvidia.com/cuda-downloads)
* Use these when accumulation and epilogue compute types are all `cutlass::half_t`
* Tuning and bug fixes to [fused GEMM + GEMM example](/examples/13_two_tensor_op_fusion/)
* Support for smaller than 128b aligned Convolutions: [see examples](test/unit/conv/device/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu#L272)
* Caching of results to accelerate Convolution [unit tests](test/unit/conv/device/cache_testbed_output.h)
* Can be enabled or disabled by running `cmake .. -DCUTLASS_TEST_ENABLE_CACHED_RESULTS=OFF`
* Corrections and bug fixes reported by the CUTLASS community
* Quaternion-valued GEMM and Convolution in single- and double-precision (targeting CUDA Cores)
* Updates to [quaternion.h](/include/cutlass/quaternion.h) and [functional.h](/include/cutlass/functional.h)
* SDK Example for [GEMM](/examples/21_quaternion_gemm/quaternion_gemm.cu) and [Convolution](/examples/22_quaternion_gemm/quaternion_conv.cu)
* [Unit tests for GEMM](/test/unit/gemm/device/simt_qgemm_nn_sm50.cu) and [Convolution](/test/unit/conv/device/conv2d_fprop_implicit_gemm_qf32nhwc_qf32nhwc_qf32nhwc_simt_f32_sm50.cu)
* Many improvements to the epilogue.
* Provide an [option](/include/cutlass/epilogue/threadblock/epilogue.h) to not fully unroll the epilogue to reduce the code size and improve the performance when using complicated elementwise operations
* Performance improvement for FP16 tensor core kernels
* [Optimized tile iterators](include/cutlass/conv/threadblock/conv3d_fprop_activation_tile_access_iterator_optimized.h) using precomputed delta table for 3-D convolution
* Full coverage of [forward](test/unit/conv/device/conv3d_fprop_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) and [backwards](test/unit/conv/device/conv3d_dgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu) passes for 3D convolution
* Direct access to Sparse Tensor Cores and maximum performance via [`mma.sp.sync`](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends)
* Fast SGEMM targeting GeForce RTX 30-series CUDA Cores
* Minor Features:
* [Activation functions](/include/cutlass/epilogue/thread/activation.h) such as [GeLU](/include/cutlass/epilogue/thread/linear_combination_gelu.h) and [Sigmoid](/include/cutlass/epilogue/thread/linear_combination_sigmoid.h)
* Small [matrix](/include/cutlass/matrix.h) and [quaternion](/include/cutlass/quaternion.h) template classes in device code
* Maximum performance via [`mma.sync`](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends)
* Tensor Float 32, BFloat16, and double-precision data types
* Mixed integer data types (int8, int4, bin1)
* Asynchronous copy for deep software pipelines via [`cp.async`](https://docs.nvidia.com/cuda/parallel-thread-execution)