cutlass/tools/util/reference/device/tensor_foreach.h

73 lines
3.3 KiB
C
Raw Normal View History

2018-05-17 02:44:56 +08:00
/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
2018-05-17 02:44:56 +08:00
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
2018-09-19 07:58:03 +08:00
#include <stdexcept>
#include "cutlass/cutlass.h"
#include "tools/util/reference/device/kernel/tensor_foreach.h"
namespace cutlass {
namespace reference {
namespace device {
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Launches a kernel for each element in a tensor's index space.
template <typename Func, int Rank, typename Params>
struct TensorForEach {
/// Constructor performs the operation.
TensorForEach(Coord<Rank> size, Params params = Params(), int grid_size = 0, int block_size = 0) {
if (!grid_size || !block_size) {
// if grid_size or block_size are zero, query occupancy using the CUDA Occupancy API
cudaError_t result = cudaOccupancyMaxPotentialBlockSize(
&grid_size,
&block_size,
reinterpret_cast<void const *>(kernel::TensorForEach<Func, Rank, Params>));
if (result != cudaSuccess) {
throw std::runtime_error("Failed to query occupancy.");
}
2018-05-17 02:44:56 +08:00
2018-09-19 07:58:03 +08:00
// Limit block size. This has the effect of increasing the number of items processed by a
// single thread and reduces the impact of initialization overhead.
block_size = (block_size < 128 ? block_size : 128);
}
2018-05-17 02:44:56 +08:00
2018-09-19 07:58:03 +08:00
dim3 grid(grid_size, 1, 1);
dim3 block(block_size, 1, 1);
2018-05-17 02:44:56 +08:00
2018-09-19 07:58:03 +08:00
kernel::TensorForEach<Func, Rank, Params><<< grid, block >>>(size, params);
}
2018-05-17 02:44:56 +08:00
};
2018-09-19 07:58:03 +08:00
///////////////////////////////////////////////////////////////////////////////////////////////////
2018-05-17 02:44:56 +08:00
2018-09-19 07:58:03 +08:00
} // namespace device
} // namespace reference
} // namesace cutlass