2019-11-20 08:55:34 +08:00
|
|
|
/***************************************************************************************************
|
2020-06-09 07:17:35 +08:00
|
|
|
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
|
2019-11-20 08:55:34 +08:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
*modification, are permitted provided that the following conditions are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
|
|
*this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
*notice, this list of conditions and the following disclaimer in the
|
|
|
|
*documentation and/or other materials provided with the distribution.
|
|
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its
|
|
|
|
*contributors may be used to endorse or promote products derived from this
|
|
|
|
*software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
*AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
*IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
*DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY DIRECT,
|
|
|
|
*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
*DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
|
|
*OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TOR (INCLUDING
|
|
|
|
*NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
|
|
*EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
**************************************************************************************************/
|
|
|
|
|
|
|
|
/*! \file
|
|
|
|
\brief Demonstrate CUTLASS debugging tool for dumping fragments and shared
|
|
|
|
memory
|
|
|
|
*/
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Standard Library includes
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
//
|
|
|
|
// CUTLASS includes
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "cutlass/aligned_buffer.h"
|
|
|
|
#include "cutlass/gemm/gemm.h"
|
|
|
|
#include "cutlass/layout/matrix.h"
|
|
|
|
#include "cutlass/matrix_shape.h"
|
|
|
|
#include "cutlass/numeric_types.h"
|
|
|
|
|
|
|
|
#include "cutlass/core_io.h"
|
|
|
|
#include "cutlass/util/host_tensor.h"
|
|
|
|
#include "cutlass/util/tensor_view_io.h"
|
|
|
|
|
|
|
|
#include "cutlass/util/reference/host/gemm.h"
|
|
|
|
#include "cutlass/util/reference/host/tensor_compare.h"
|
|
|
|
#include "cutlass/util/reference/host/tensor_fill.h"
|
|
|
|
|
|
|
|
#include "cutlass/transform/pitch_linear_thread_map.h"
|
|
|
|
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
|
|
|
|
#include "cutlass/transform/threadblock/regular_tile_iterator_tensor_op.h"
|
|
|
|
|
|
|
|
#include "cutlass/util/debug.h"
|
|
|
|
#include "cutlass/util/device_dump.h"
|
|
|
|
|
|
|
|
#define EXAMPLE_MATRIX_ROW 64
|
|
|
|
#define EXAMPLE_MATRIX_COL 32
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
template <typename Element, typename GmemIterator, typename SmemIterator>
|
|
|
|
__global__ void kernel_dump(typename GmemIterator::Params params,
|
|
|
|
typename GmemIterator::TensorRef ref) {
|
2020-09-24 05:00:58 +08:00
|
|
|
extern __shared__ Element shared_storage[];
|
2019-11-20 08:55:34 +08:00
|
|
|
|
|
|
|
// Construct the global iterator and load the data to the fragments.
|
|
|
|
int tb_thread_id = threadIdx.y * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
GmemIterator gmem_iterator(params, ref.data(),
|
|
|
|
{EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL},
|
|
|
|
tb_thread_id);
|
|
|
|
|
|
|
|
typename GmemIterator::Fragment frag;
|
|
|
|
|
|
|
|
frag.clear();
|
|
|
|
gmem_iterator.load(frag);
|
|
|
|
|
|
|
|
// Call dump_fragment() with different parameters.
|
|
|
|
if (threadIdx.x == 0 && blockIdx.x == 0)
|
|
|
|
printf("\nAll threads dump all the elements:\n");
|
|
|
|
cutlass::debug::dump_fragment(frag);
|
|
|
|
|
|
|
|
if (threadIdx.x == 0 && blockIdx.x == 0)
|
|
|
|
printf("\nFirst thread dumps all the elements:\n");
|
|
|
|
cutlass::debug::dump_fragment(frag, /*N = */ 1);
|
|
|
|
|
|
|
|
if (threadIdx.x == 0 && blockIdx.x == 0)
|
|
|
|
printf("\nFirst thread dumps first 16 elements:\n");
|
|
|
|
cutlass::debug::dump_fragment(frag, /*N = */ 1, /*M = */ 16);
|
|
|
|
|
|
|
|
if (threadIdx.x == 0 && blockIdx.x == 0)
|
|
|
|
printf("\nFirst thread dumps first 16 elements with a stride of 8:\n");
|
|
|
|
cutlass::debug::dump_fragment(frag, /*N = */ 1, /*M = */ 16, /*S = */ 8);
|
|
|
|
|
|
|
|
// Construct the shared iterator and store the data to the shared memory.
|
|
|
|
SmemIterator smem_iterator(
|
|
|
|
typename SmemIterator::TensorRef(
|
|
|
|
{shared_storage, SmemIterator::Layout::packed(
|
|
|
|
{EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL})}),
|
|
|
|
tb_thread_id);
|
|
|
|
|
|
|
|
smem_iterator.store(frag);
|
|
|
|
|
|
|
|
// Call dump_shmem() with different parameters.
|
|
|
|
if (threadIdx.x == 0 && blockIdx.x == 0) printf("\nDump all the elements:\n");
|
|
|
|
cutlass::debug::dump_shmem(shared_storage,
|
|
|
|
EXAMPLE_MATRIX_ROW * EXAMPLE_MATRIX_COL);
|
|
|
|
|
|
|
|
if (threadIdx.x == 0 && blockIdx.x == 0)
|
|
|
|
printf("\nDump all the elements with a stride of 8:\n");
|
|
|
|
cutlass::debug::dump_shmem(
|
|
|
|
shared_storage, EXAMPLE_MATRIX_ROW * EXAMPLE_MATRIX_COL, /*S = */ 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
/// Entry point for dump_reg_shmem example.
|
|
|
|
//
|
|
|
|
// usage:
|
|
|
|
//
|
|
|
|
// 02_dump_reg_shmem
|
|
|
|
//
|
|
|
|
int main() {
|
|
|
|
// Initialize a 64x32 column major matrix with sequential data (1,2,3...).
|
|
|
|
using Element = cutlass::half_t;
|
|
|
|
using Layout = cutlass::layout::ColumnMajor;
|
|
|
|
|
|
|
|
cutlass::HostTensor<Element, Layout> matrix(
|
|
|
|
{EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL});
|
|
|
|
cutlass::reference::host::BlockFillSequential(matrix.host_data(),
|
|
|
|
matrix.capacity());
|
|
|
|
|
|
|
|
// Dump the matrix.
|
|
|
|
std::cout << "Matrix:\n" << matrix.host_view() << "\n";
|
|
|
|
|
|
|
|
// Copy the matrix to the device.
|
|
|
|
matrix.sync_device();
|
|
|
|
|
|
|
|
// Define a global iterator, a shared iterator and their thread map.
|
|
|
|
using ThreadMap = cutlass::transform::PitchLinearWarpRakedThreadMap<
|
|
|
|
cutlass::layout::PitchLinearShape<EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL>,
|
|
|
|
32, cutlass::layout::PitchLinearShape<8, 4>, 8>;
|
|
|
|
|
|
|
|
using GmemIterator =
|
|
|
|
cutlass::transform::threadblock::PredicatedTileIterator<
|
|
|
|
cutlass::MatrixShape<EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL>, Element,
|
|
|
|
Layout, 1, ThreadMap>;
|
|
|
|
|
|
|
|
typename GmemIterator::Params params(matrix.layout());
|
|
|
|
|
|
|
|
using SmemIterator = cutlass::transform::threadblock::RegularTileIterator<
|
|
|
|
cutlass::MatrixShape<EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL>, Element,
|
|
|
|
cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<16, 64>, 1,
|
|
|
|
ThreadMap>;
|
|
|
|
|
|
|
|
dim3 grid(1, 1);
|
|
|
|
dim3 block(32, 1, 1);
|
|
|
|
|
2020-09-24 05:00:58 +08:00
|
|
|
int smem_size =
|
|
|
|
int(sizeof(Element) * EXAMPLE_MATRIX_ROW * EXAMPLE_MATRIX_COL);
|
|
|
|
|
2019-11-20 08:55:34 +08:00
|
|
|
kernel_dump<Element, GmemIterator, SmemIterator>
|
2020-09-24 05:00:58 +08:00
|
|
|
<<<grid, block, smem_size, 0>>>(params, matrix.device_ref());
|
2019-11-20 08:55:34 +08:00
|
|
|
|
|
|
|
cudaError_t result = cudaDeviceSynchronize();
|
|
|
|
|
|
|
|
if (result != cudaSuccess) {
|
|
|
|
std::cout << "Failed" << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (result == cudaSuccess ? 0 : -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|