cutlass/media/docs/quickstart.md

537 lines
18 KiB
Markdown
Raw Normal View History

![ALT](/media/images/gemm-hierarchy-with-epilogue-no-labels.png "CUTLASS Quick Start Guide")
[README](/README.md#documentation) > **Quick Start**
# Quickstart
## Prerequisites
CUTLASS requires:
- NVIDIA CUDA Toolkit (9.2 or later required, [11.1](https://developer.nvidia.com/cuda-toolkit) recommended)
- CMake 3.12+
- host compiler supporting C++11 or greater (g++ 7.3.0 or Microsoft Visual Studio 2015 recommended)
- Python 3.6+
CUTLASS may be optionally compiled and linked with
- cuBLAS
- cuDNN v7.6 or later
## Initial build steps
Construct a build directory and run CMake.
```bash
$ export CUDACXX=${CUDA_INSTALL_PATH}/bin/nvcc
$ mkdir build && cd build
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 # compiles for NVIDIA Ampere GPU architecture
```
If your goal is strictly to build only the CUTLASS Profiler and to minimize compilation time, we suggest
executing the following CMake command in an empty `build/` directory.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 -DCUTLASS_ENABLE_TESTS=OFF -DCUTLASS_UNITY_BUILD_ENABLED=ON
```
This reduces overall compilation time by excluding unit tests and enabling the unit build.
You may reduce build times by compiling only certain operations by setting the `CUTLASS_LIBRARY_OPERATIONS` flag as shown below,
executed from an empty `build/` directory. This only compiles 2-D convolution kernels.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 -DCUTLASS_LIBRARY_OPERATIONS=conv2d
```
You may also filter kernels by name by supplying a filter string with flag `CUTLASS_LIBRARY_KERNELS`.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 -DCUTLASS_LIBRARY_KERNELS=s16816gemm,s16816fprop*128x128
```
You may explicitly exclude cuBLAS and cuDNN as dependencies with the following CMake flags.
- `-DCUTLASS_ENABLE_CUBLAS=OFF`
- `-DCUTLASS_ENABLE_CUDNN=OFF`
## Build and run the CUTLASS Profiler
From the `build/` directory created above, compile the the CUTLASS Profiler.
```bash
$ make cutlass_profiler -j12
```
Then execute the CUTLASS Profiler computing GEMM, execute the following command.
```bash
$ ./tools/profiler/cutlass_profiler --kernels=sgemm --m=4352 --n=4096 --k=4096
=============================
Problem ID: 1
Provider: CUTLASS
Operation: cutlass_simt_sgemm_128x128_nn
Disposition: Passed
Status: Success
Arguments: --m=4352 --n=4096 --k=4096 --A=f32:column --B=f32:column --C=f32:column --alpha=1 --beta=0 \
--split_k_slices=1 --batch_count=1 --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 \
--stages=2 --warps_m=2 --warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 \
--max_cc=1024
Bytes: 52428800 bytes
FLOPs: 146064539648 flops
Runtime: 10.5424 ms
Memory: 4.63158 GiB/s
Math: 13854.9 GFLOP/s
```
To execute the CUTLASS Profiler for Convolution, run the following example.
```bash
$ ./tools/profiler/cutlass_profiler --kernels=s1688fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --pad_h=1 --pad_w=1
```
To execute all CUTLASS 2-D convolution operators, execute the following.
```bash
$ ./tools/profiler/cutlass_profiler --operation=conv2d--n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3
=============================
Problem ID: 1
Provider: CUTLASS
OperationKind: conv2d
Operation: cutlass_simt_sfprop_optimized_128x128_8x2_nhwc
Status: Success
Verification: ON
Disposition: Passed
reference_device: Passed
Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --pad_h=1 --pad_w=1 \
--stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f32:nhwc --Filter=f32:nhwc --Output=f32:nhwc \
--conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1 \
--eq_gemm_provider=none --op_class=simt --accum=f32 --cta_m=128 --cta_n=128 --cta_k=8 --stages=2 --warps_m=4 \
--warps_n=2 --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=1 --min_cc=50 --max_cc=1024
Bytes: 2055798784 bytes
FLOPs: 118482796544 flops
Runtime: 8.13237 ms
Memory: 235.431 GiB/s
Math: 14569.3 GFLOP/s
```
See [documentation for the CUTLASS Profiler](profiler.md) for more details.
## Build and run CUTLASS Unit Tests
From the `build/` directory created above, simply build the target `test_unit` to compile and run
all unit tests.
```bash
$ make test_unit -j
...
...
...
[----------] Global test environment tear-down
[==========] 946 tests from 57 test cases ran. (10812 ms total)
[ PASSED ] 946 tests.
$
```
The exact number of tests run is subject to change as we add more functionality.
No tests should fail. Unit tests automatically construct the appropriate runtime filters
to avoid executing on architectures that do not support all features under test.
The unit tests are arranged hierarchically mirroring the CUTLASS Template Library. This enables
parallelism in building and running tests as well as reducing compilation times when a specific
set of tests are desired.
For example, the following executes strictly the warp-level GEMM tests.
```bash
$ make test_unit_gemm_warp -j
...
...
[----------] 3 tests from SM75_warp_gemm_tensor_op_congruous_f16
[ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x8_32x128x8_16x8x8
[ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x8_32x128x8_16x8x8 (0 ms)
[ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_64x64x32_16x8x8
[ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_64x64x32_16x8x8 (2 ms)
[ RUN ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_32x32x32_16x8x8
[ OK ] SM75_warp_gemm_tensor_op_congruous_f16.128x128x32_32x32x32_16x8x8 (1 ms)
[----------] 3 tests from SM75_warp_gemm_tensor_op_congruous_f16 (3 ms total)
...
...
[----------] Global test environment tear-down
[==========] 104 tests from 32 test cases ran. (294 ms total)
[ PASSED ] 104 tests.
[100%] Built target test_unit_gemm_warp
```
## Building for Multiple Architectures
To minimize compilation time, specific GPU architectures can be enabled via the CMake command,
selected by [CUDA Compute Capability.](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities)
**NVIDIA Ampere Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 # compiles for NVIDIA Ampere GPU architecture
```
**NVIDIA Turing Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 # compiles for NVIDIA Turing GPU architecture
```
**NVIDIA Volta Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=70 # compiles for NVIDIA Volta GPU architecture
```
**NVIDIA Pascal Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="60;61" # compiles for NVIDIA Pascal GPU architecture
```
**NVIDIA Maxwell Architecture.**
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="50;53" # compiles for NVIDIA Maxwell GPU architecture
```
## Clang
For experimental purposes, CUTLASS may be compiled with
[clang 8.0](https://github.com/llvm/llvm-project/releases/download/llvmorg-8.0.1/clang+llvm-8.0.1-amd64-unknown-freebsd11.tar.xz) using the
[CUDA 10.0 Toolkit](https://developer.nvidia.com/cuda-10.0-download-archive).
At this time, compiling with clang enables the CUTLASS SIMT GEMM kernels (sgemm, dgemm, hgemm, igemm)
but does not enable TensorCores.
```bash
$ mkdir build && cd build
$ cmake -DCUDA_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
$ make test_unit -j
```
## Using CUTLASS within other applications
Applications should list [`/include`](/include) within their include paths. They must be
compiled as C++11 or greater.
**Example:** print the contents of a variable storing half-precision data.
```c++
#include <iostream>
#include <cutlass/cutlass.h>
#include <cutlass/numeric_types.h>
#include <cutlass/core_io.h>
int main() {
cutlass::half_t x = 2.25_hf;
std::cout << x << std::endl;
return 0;
}
```
## Launching a GEMM kernel in CUDA
**Example:** launch a mixed-precision GEMM targeting Turing Tensor Cores.
_Note, this example uses CUTLASS Utilities. Be sure `tools/util/include` is listed as an include path._
```c++
#include <cutlass/numeric_types.h>
#include <cutlass/gemm/device/gemm.h>
#include <cutlass/util/host_tensor.h>
int main() {
// Define the GEMM operation
using Gemm = cutlass::gemm::device::Gemm<
cutlass::half_t, // ElementA
cutlass::layout::ColumnMajor, // LayoutA
cutlass::half_t, // ElementB
cutlass::layout::ColumnMajor, // LayoutB
cutlass::half_t, // ElementOutput
cutlass::layout::ColumnMajor, // LayoutOutput
float, // ElementAccumulator
cutlass::arch::OpClassTensorOp, // tag indicating Tensor Cores
cutlass::arch::Sm75 // tag indicating target GPU compute architecture
>;
Gemm gemm_op;
cutlass::Status status;
//
// Define the problem size
//
int M = 512;
int N = 256;
int K = 128;
float alpha = 1.25f;
float beta = -1.25f;
//
// Allocate device memory
//
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> C({M, N});
cutlass::half_t const *ptrA = A.device_data();
cutlass::half_t const *ptrB = B.device_data();
cutlass::half_t const *ptrC = C.device_data();
cutlass::half_t *ptrD = C.device_data();
int lda = A.device_ref().stride(0);
int ldb = B.device_ref().stride(0);
int ldc = C.device_ref().stride(0);
int ldd = C.device_ref().stride(0);
//
// Launch GEMM on the device
//
status = gemm_op({
{M, N, K},
{ptrA, lda}, // TensorRef to A device tensor
{ptrB, ldb}, // TensorRef to B device tensor
{ptrC, ldc}, // TensorRef to C device tensor
{ptrD, ldd}, // TensorRef to D device tensor - may be the same as C
{alpha, beta} // epilogue operation arguments
});
if (status != cutlass::Status::kSuccess) {
return -1;
}
return 0;
}
```
Note, the above could be simplified as follows using helper methods defined in `HostTensor`.
```c++
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> C({M, N});
//
// Use the TensorRef returned by HostTensor::device_ref().
//
status = gemm_op({
{M, N, K},
A.device_ref(), // TensorRef to A device tensor
B.device_ref(), // TensorRef to B device tensor
C.device_ref(), // TensorRef to C device tensor
C.device_ref(), // TensorRef to D device tensor - may be the same as C
{alpha, beta} // epilogue operation arguments
});
```
# CUTLASS Library
The [CUTLASS Library](./tools/library) defines an API for managing and executing collections of compiled
kernel instances and launching them from host code without template instantiations in client code.
The host-side launch API is designed to be analogous to BLAS implementations for convenience, though its
kernel selection procedure is intended only to be functionally sufficient. It may not launch the
optimal tile size for a given problem. It chooses the first available kernel whose data types,
layouts, and alignment constraints satisfy the given problem. Kernel instances and a data structure
describing them are completely available to client applications which may choose to implement their
own selection logic.
[cuBLAS](https://developer.nvidia.com/cublas) offers the best performance and functional coverage
for dense matrix computations on NVIDIA GPUs.
The CUTLASS Library is used by the CUTLASS Profiler to manage kernel instances, and it is also used
by several SDK examples.
* [10_planar_complex](/examples/10_planar_complex/planar_complex.cu)
* [11_planar_complex_array](/examples/11_planar_complex_array/planar_complex_array.cu)
The CUTLASS Library defines enumerated types describing numeric data types, matrix and tensor
layouts, math operation classes, complex transformations, and more.
Client applications should specify [`tools/library/include`](/tools/library/include) in their
include paths and link against libcutlas_lib.so.
The CUTLASS SDK example [10_planar_complex](/examples/10_planar_complex/CMakeLists.txt) specifies
its dependency on the CUTLASS Library with the following CMake command.
```
target_link_libraries(
10_planar_complex
PRIVATE
cutlass_lib
cutlass_tools_util_includes
)
```
A sample kernel launch from host-side C++ is shown as follows.
```c++
#include "cutlass/library/library.h"
#include "cutlass/library/handle.h"
int main() {
//
// Define the problem size
//
int M = 512;
int N = 256;
int K = 128;
float alpha = 1.25f;
float beta = -1.25f;
//
// Allocate device memory
//
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> C({M, N});
float const *ptrA = A.device_data();
float const *ptrB = B.device_data();
float const *ptrC = C.device_data();
float *ptrD = C.device_data();
int lda = A.device_ref().stride(0);
int ldb = B.device_ref().stride(0);
int ldc = C.device_ref().stride(0);
int ldd = D.device_ref().stride(0);
//
// CUTLASS Library call to execute device GEMM
//
cutlass::library::Handle handle;
//
// Launch GEMM on CUDA device.
//
cutlass::Status status = handle.gemm(
M,
N,
K,
cutlass::library::NumericTypeID::kF32, // data type of internal accumulation
cutlass::library::NumericTypeID::kF32, // data type of alpha/beta scalars
&alpha, // pointer to alpha scalar
cutlass::library::NumericTypeID::kF32, // data type of A matrix
cutlass::library::LayoutTypeID::kColumnMajor, // layout of A matrix
ptrA, // pointer to A matrix in device memory
lda, // leading dimension of A matrix
cutlass::library::NumericTypeID::kF32, // data type of B matrix
cutlass::library::LayoutTypeID::kColumnMajor, // layout of B matrix
ptrB, // pointer to B matrix in device memory
ldb, // leading dimension of B matrix
&beta, // pointer to beta scalar
cutlass::library::NumericTypeID::kF32, // data type of C and D matrix
ptrC, // pointer to C matrix in device memory
ldc, // leading dimension fo C matrix
ptrD, // pointer to D matrix in device memory
ldd // leading dimension of D matrix
);
if (status != cutlass::Status::kSuccess) {
return -1;
}
return 0;
}
```
Kernels can be selectively included in the CUTLASS Library by specifying filter strings when
executing CMake. For example, only single-precision GEMM kernels can be instantiated as follows.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 -DCUTLASS_LIBRARY_KERNELS=sgemm
```
Compling only the kernels desired reduces compilation time.
To instantiate kernels of all tile sizes, data types, and alignment constraints, specify
`-DCUTLASS_LIBRARY_KERNELS=all` when running `cmake`.
Several recipes are defined below for convenience. They may be combined as a comma-delimited list.
**Example.** All GEMM kernels targeting NVIDIA Ampere Tensor Cores.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=80 -DCUTLASS_LIBRARY_KERNELS=tensorop*gemm
```
**Example.** All kernels for NVIDIA Volta, Turing, and Ampere architectures. Enabling
the "unity build" instantiates multiple kernel instances in each compilation unit, thereby
reducing binary size and avoiding linker limitations on some platforms.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=all -DCUTLASS_UNITY_BUILD_ENABLED=ON
```
**Example.** All GEMM kernels targeting Turing Tensor Cores.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS=75 -DCUTLASS_LIBRARY_KERNELS=tensorop*gemm
```
**Example.** All GEMM kernels with single-precision accumulation.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=s*gemm
```
**Example.** All kernels which expect A and B to be column-major.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=gemm*nn
```
**Example.** All planar complex GEMM variants.
```bash
$ cmake .. -DCUTLASS_NVCC_ARCHS="70;75;80" -DCUTLASS_LIBRARY_KERNELS=planar_complex
```
# Copyright
Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
```
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
* Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```