cutlass/test/unit/conv/device/conv2d_with_absmax_testbed.h

623 lines
23 KiB
C
Raw Normal View History

2024-03-20 05:51:04 +08:00
/***************************************************************************************************
* Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Testbed for running device-level Conv2Ds with absolute maximum calculation and scaling
*/
#pragma once
#include <iostream>
#include <fstream>
#include <sstream>
#include "conv2d_problems.h"
#include "../../common/cutlass_unit_test.h"
#include "../../gemm/device/testbed_utils.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/conv/convolution.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/reference/host/convolution.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_reduce.h"
namespace test {
namespace conv {
namespace device {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename Conv,
template<typename T> class ActivationFunctor
>
struct TestbedConv2dWithAbsMax {
using ElementAccumulator = typename Conv::ElementAccumulator;
using ElementCompute = typename Conv::UnderlyingKernel::Epilogue::OutputOp::ElementCompute;
using ElementScalingFactor = typename Conv::EpilogueOutputOp::ElementScalingFactor;
using ElementAbsmax = typename Conv::EpilogueOutputOp::ElementAbsmax;
static cutlass::conv::Operator const kConvolutionalOperator = Conv::kConvolutionalOperator;
static bool const kScaleAux = Conv::EpilogueOutputOp::kIsScalingAndAmaxAuxOutputNeeded;
static bool const kScaleOutput = Conv::EpilogueOutputOp::kIsScalingAndAmaxOutputNeeded;
bool doScaleA;
bool doScaleB;
bool doScaleC;
/// Initialization
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
cutlass::Distribution::Kind init_C;
uint64_t seed;
cutlass::HostTensor<typename Conv::ElementA, typename Conv::LayoutA> tensor_A;
cutlass::HostTensor<typename Conv::ElementB, typename Conv::LayoutB> tensor_B;
cutlass::HostTensor<typename Conv::ElementC, typename Conv::LayoutC> tensor_C;
cutlass::HostTensor<typename Conv::EpilogueOutputOp::ElementAuxOutput, typename Conv::LayoutC> tensor_Aux;
cutlass::HostTensor<typename Conv::EpilogueOutputOp::ElementOutput, typename Conv::LayoutC> tensor_D;
cutlass::HostTensor<typename Conv::ElementC, typename Conv::LayoutC> tensor_Vector;
cutlass::HostTensor<ElementAccumulator, typename Conv::LayoutC> tmp_D;
cutlass::HostTensor<typename Conv::EpilogueOutputOp::ElementOutput, typename Conv::LayoutC> reference_D;
cutlass::HostTensor<typename Conv::EpilogueOutputOp::ElementAuxOutput, typename Conv::LayoutC> reference_Aux;
cutlass::HostTensor<ElementScalingFactor, typename Conv::LayoutC> scale_A;
cutlass::HostTensor<ElementScalingFactor, typename Conv::LayoutC> scale_B;
cutlass::HostTensor<ElementScalingFactor, typename Conv::LayoutC> scale_C;
cutlass::HostTensor<ElementScalingFactor, typename Conv::LayoutC> scale_D;
cutlass::HostTensor<ElementScalingFactor, typename Conv::LayoutC> scale_Aux;
cutlass::HostTensor<ElementAbsmax, typename Conv::LayoutC> abs_max_Aux;
cutlass::HostTensor<ElementAbsmax, typename Conv::LayoutC> abs_max_D;
cutlass::HostTensor<ElementAbsmax, typename Conv::LayoutC> reference_abs_max_Aux;
cutlass::HostTensor<ElementAbsmax, typename Conv::LayoutC> reference_abs_max_D;
//
// Methods
//
TestbedConv2dWithAbsMax(
bool scaleA = true,
bool scaleB = true,
bool scaleC = true,
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
doScaleA(scaleA), doScaleB(scaleB), doScaleC(scaleC),
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
/// Helper to initialize scaling factors
template <typename Element, typename Layout>
bool initialize_scale_factor(cutlass::TensorView<Element, Layout> view, uint64_t seed, int bits=0) {
cutlass::reference::host::TensorFillRandomUniform(view, seed, double(1.), double(0.), bits);
return true;
}
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
bool initialize_tensor(
cutlass::TensorView<Element, Layout> view,
cutlass::Distribution::Kind dist_kind,
uint64_t seed) {
if (dist_kind == cutlass::Distribution::Uniform) {
double scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
int bits_output = cutlass::sizeof_bits<typename Conv::ElementC>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
} else if (bits_input <= 8) {
scope_max = 2;
scope_min = -2;
} else if (bits_output == 16) {
scope_max = 5;
scope_min = -5;
} else {
scope_max = 8;
scope_min = -8;
}
cutlass::reference::host::TensorFillRandomUniform(
view, seed, scope_max, scope_min, 0);
}
else if (dist_kind == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(view);
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
}
else if (dist_kind == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
else {
EXPECT_TRUE(false) << "Not implemented";
return false;
}
return true;
}
/// Initializes data structures
void initialize(cutlass::conv::Conv2dProblemSize const &problem_size) {
//
// Allocate the GEMM workspace
//
tensor_A.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size));
tensor_B.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size));
tensor_C.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size));
tensor_D.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size));
tensor_Vector.resize({1, 1, 1, implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size).c()});
reference_D.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size), false);
tmp_D.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size), false);
EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019));
EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018));
EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017));
EXPECT_TRUE(initialize_tensor(tensor_Vector.host_view(), init_C, seed + 2020));
// It is possible to randomly initialize to all zeros, so override this with non-zeros
// in the upper left corner of each operand.
cutlass::Coord<4> origin(0);
tensor_A.host_view().at(origin) = typename Conv::ElementA(1);
tensor_B.host_view().at(origin) = typename Conv::ElementB(1);
tensor_C.host_view().at(origin) = typename Conv::ElementC(1);
tensor_Vector.host_view().at(origin) = typename Conv::ElementC(1);
cutlass::reference::host::TensorFill(tensor_D.host_view());
cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view());
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D.sync_device();
tensor_Vector.sync_device();
int scale_bits = 2;
if (doScaleA) {
scale_A.resize({1, 1, 1, 1});
EXPECT_TRUE(initialize_scale_factor(scale_A.host_view(), seed + 2021, scale_bits));
scale_A.sync_device();
}
if (doScaleB) {
scale_B.resize({1, 1, 1, 1});
EXPECT_TRUE(initialize_scale_factor(scale_B.host_view(), seed + 2022, scale_bits));
scale_B.sync_device();
}
if (doScaleC) {
scale_C.resize({1, 1, 1, 1});
EXPECT_TRUE(initialize_scale_factor(scale_C.host_view(), seed + 2023, scale_bits));
scale_C.sync_device();
}
if (kScaleOutput) {
scale_D.resize({1, 1, 1, 1});
EXPECT_TRUE(initialize_scale_factor(scale_D.host_view(), seed + 2024, scale_bits));
scale_D.sync_device();
abs_max_D.resize({1, 1, 1, 1});
cutlass::reference::host::TensorFill(abs_max_D.host_view());
abs_max_D.sync_device();
reference_abs_max_D.resize({1, 1, 1, 1});
}
if (kScaleAux) {
tensor_Aux.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size));
cutlass::reference::host::TensorFill(tensor_Aux.host_view());
tensor_Aux.sync_device();
scale_Aux.resize({1, 1, 1, 1});
EXPECT_TRUE(initialize_scale_factor(scale_Aux.host_view(), seed + 2025, scale_bits));
scale_Aux.sync_device();
abs_max_Aux.resize({1, 1, 1, 1});
cutlass::reference::host::TensorFill(abs_max_Aux.host_view());
abs_max_Aux.sync_device();
reference_Aux.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size), false);
reference_abs_max_Aux.resize({1, 1, 1, 1});
}
}
/// Compares computed reference with device reference and outputs to a file if incorrect
bool compare_reference(
cutlass::conv::Conv2dProblemSize const &problem_size,
ElementCompute alpha,
ElementCompute beta) {
tensor_D.sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0);
bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view());
if (kScaleAux) {
tensor_Aux.sync_host();
abs_max_Aux.sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_Aux.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(abs_max_Aux.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_Aux.host_view()), 0);
passed &= cutlass::reference::host::TensorEquals(reference_Aux.host_view(), tensor_Aux.host_view());
passed &= cutlass::reference::host::TensorEquals(abs_max_Aux.host_view(), reference_abs_max_Aux.host_view());
}
if (kScaleOutput) {
abs_max_D.sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(abs_max_D.host_view()), 0);
passed &= cutlass::reference::host::TensorEquals(abs_max_D.host_view(), reference_abs_max_D.host_view());
}
EXPECT_TRUE(passed) << " mismatched reference";
if (!passed) {
std::ofstream file0("conv_testbed_with_amax_errors_reference.txt");
std::ofstream file1("conv_testbed_with_amax_errors_computed.txt");
std::ofstream file("conv_testbed_with_amax_errors.txt");
file
<< "problem: " << problem_size
<< ", alpha: " << alpha << ", beta: " << beta << "\n\n";
file
<< "A =\n" << tensor_A.host_view()
<< "\nB =\n" << tensor_B.host_view()
<< "\nC =\n" << tensor_C.host_view()
<< "\nVector =\n" << tensor_Vector.host_view()
<< "\nScaleA = " << scale_A.host_view()
<< "\nScaleB = " << scale_B.host_view()
<< "\nScaleC = " << scale_C.host_view()
<< "\nScaleD = " << scale_D.host_view()
<< "\nScaleAux = " << scale_Aux.host_view()
<< std::endl;
file0 << "\n\nReference D =\n" << reference_D.host_view() << std::endl;
file1 << "\n\nComputed D =\n" << tensor_D.host_view() << std::endl;
if (kScaleAux) {
file0 << "\n\nReference Aux =\n" << reference_Aux.host_view() << std::endl;
file1 << "\n\nComputed Aux =\n" << tensor_Aux.host_view() << std::endl;
file0 << "\n\nReference Absmax Aux = " << reference_abs_max_Aux.host_view() << std::endl;
file1 << "\n\nComputed Absmax Aux = " << abs_max_Aux.host_view() << std::endl;
}
if (kScaleOutput) {
file0 << "\n\nReference Absmax D = " << reference_abs_max_D.host_view() << std::endl;
file1 << "\n\nComputed Absmax D = " << abs_max_D.host_view() << std::endl;
}
}
return passed;
}
/// Verifies the result is a GEMM
bool verify(
cutlass::conv::Conv2dProblemSize const &problem_size,
ElementCompute alpha,
ElementCompute beta) {
cutlass::Coord<4> origin(0);
ElementCompute scaled_alpha = alpha;
if (doScaleA) {
scaled_alpha *= scale_A.host_view().at(origin);
}
if (doScaleB) {
scaled_alpha *= scale_B.host_view().at(origin);
}
ElementCompute scaled_beta = beta;
if (doScaleC) {
scaled_beta *= scale_C.host_view().at(origin);
}
//
// Verify
//
cutlass::reference::host::Conv2d<
typename Conv::ElementA, typename Conv::LayoutA,
typename Conv::ElementB, typename Conv::LayoutB,
typename Conv::ElementC, typename Conv::LayoutC,
ElementCompute, ElementAccumulator, ElementAccumulator
>(
kConvolutionalOperator,
problem_size,
tensor_A.host_ref(),
tensor_B.host_ref(),
tensor_C.host_ref(),
tmp_D.host_ref(),
scaled_alpha,
scaled_beta
);
ElementCompute tmp_abs_max_Aux(0.);
ElementCompute tmp_abs_max_D(0.);
cutlass::NumericConverter<ElementCompute, typename Conv::ElementC> cvt_c_to_compute;
cutlass::NumericConverter<ElementCompute, ElementAccumulator> cvt_accum_to_compute;
cutlass::NumericConverter<ElementAbsmax, ElementCompute> cvt_compute_to_absmax;
cutlass::NumericConverter<typename Conv::EpilogueOutputOp::ElementOutput, ElementCompute> cvt_compute_to_d;
cutlass::NumericConverter<typename Conv::EpilogueOutputOp::ElementAuxOutput, ElementCompute> cvt_compute_to_aux;
cutlass::absolute_value_op<ElementCompute> abs;
cutlass::maximum_with_nan_propogation<ElementCompute> max;
ActivationFunctor<ElementCompute> act;
ElementScalingFactor d_scale = kScaleOutput ? scale_D.host_view().at(origin) : ElementScalingFactor(1.);
for (int n = 0; n < problem_size.N; ++n) {
for (int p = 0; p < problem_size.P; ++p) {
for (int q = 0; q < problem_size.Q; ++q) {
for (int k = 0; k < problem_size.K; ++k) {
ElementCompute intermediate = cvt_accum_to_compute(tmp_D.host_view().at({n, p, q, k}));
ElementCompute bias = cvt_c_to_compute(tensor_Vector.host_view().at({0, 0, 0, k}));
ElementCompute aux = intermediate + bias;
ElementCompute d = act(aux);
tmp_abs_max_Aux = max(abs(aux), tmp_abs_max_Aux);
tmp_abs_max_D = max(abs(d), tmp_abs_max_D);
reference_D.host_view().at({n, p, q, k}) = cvt_compute_to_d(d * d_scale);
if (kScaleAux) {
reference_Aux.host_view().at({n, p, q, k}) = cvt_compute_to_aux(aux * scale_Aux.host_view().at(origin));
}
}
}
}
}
if (kScaleAux) {
reference_abs_max_Aux.host_view().at(origin) = cvt_compute_to_absmax(tmp_abs_max_Aux);
}
if (kScaleOutput) {
reference_abs_max_D.host_view().at(origin) = cvt_compute_to_absmax(tmp_abs_max_D);
}
return compare_reference(problem_size, alpha, beta);
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
//
// Determine SMEM requirements and waive if not satisfied
//
size_t smem_size = sizeof(typename Conv::UnderlyingKernel::SharedStorage);
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.sharedMemPerBlockOptin < smem_size) {
return false;
}
return true;
}
/// Executes one test
bool run(
cutlass::conv::Conv2dProblemSize const &problem_size,
ElementCompute alpha = ElementCompute(1),
ElementCompute beta = ElementCompute(0))
{
// Waive test if insufficient CUDA device
if (!sufficient()) {
if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) {
std::cerr << "Test waived due to insufficient CUDA device." << std::endl;
}
return true;
}
this->initialize(problem_size);
//
// Initialize the GEMM operator
//
typename Conv::EpilogueOutputOp::Params::ActivationParams activation_params{alpha, beta};
typename Conv::EpilogueOutputOp::Params epilogue_params{
activation_params,
scale_A.device_data(),
scale_B.device_data(),
scale_C.device_data(),
scale_D.device_data(),
scale_Aux.device_data(),
abs_max_Aux.device_data(),
abs_max_D.device_data()
};
typename Conv::Arguments arguments{
problem_size,
tensor_A.device_ref(),
tensor_B.device_ref(),
tensor_C.device_ref(),
tensor_D.device_ref(),
tensor_Aux.device_ref(),
epilogue_params,
cutlass::conv::SplitKMode::kSerial,
tensor_Vector.device_data(),
0
};
Conv conv2d_op;
cutlass::Status status = conv2d_op.can_implement(arguments);
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
size_t workspace_size = Conv::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
status = conv2d_op.initialize(arguments, workspace.get());
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
//
// Run the GEMM
//
status = conv2d_op();
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
cudaError_t cuda_error = cudaDeviceSynchronize();
EXPECT_TRUE(cuda_error == cudaSuccess) << cudaGetErrorString(cuda_error);
//
// Verify
//
bool passed = this->verify(problem_size, alpha, beta);
if (!passed) {
std::cout << "Failed" << std::endl;
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ImplicitGemm,
template<typename T> class ActivationFunctor = cutlass::epilogue::thread::Identity
>
bool TestAllConv2dWithAbsmax(bool scaleA=true, bool scaleB=true, bool scaleC=true) {
const Conv2dProblemVector &conv_test_sizes = Conv2dProblemVector();
const Conv2dProblemVector &conv_blacklist_sizes = Conv2dProblemVector();
//
// Testbed object
//
TestbedConv2dWithAbsMax<ImplicitGemm, ActivationFunctor> testbed(scaleA, scaleB, scaleC);
//
// Get conv problem sizes to run conv operator
//
TestbedConv2dProblemSizes conv_problems(128/cutlass::sizeof_bits<typename ImplicitGemm::ElementA>::value);
// Vector of conv2d problem sizes to avoid duplicate runs
Conv2dProblemVector conv_tested_sizes;
Conv2dProblemVector const *problem_vectors[] = {
&conv_test_sizes, // run user specified sizes
&conv_problems.conv2d_default_sizes, // run default and cudnn bug sizes
&conv_problems.conv2d_resnet50_sizes, // run resnet50 sizes
#if CUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED
&conv_problems.conv2d_rigorous_sizes, // run large and rigorous sizes if enabled
#endif
};
bool passed = true;
// Sweep conv2d problem sizes (split-k-mode=kSerial, split-k-slice=1, alpha=1.0, beta=0.0)
for (Conv2dProblemVector const * problem_vector : problem_vectors) {
// Prune all problems with channels that aren't divisible by the number of elements accessed per
// load for operands A and B. This is meant to align with the requirements of iterators used for
// fprop kernels.
ChannelDivisibilitySpecification channel_spec(128 / cutlass::sizeof_bits<typename ImplicitGemm::ElementA>::value);
auto pruned_problem_vector = prune(*problem_vector, channel_spec);
// Run conv testbed on default convolution sizes
for(auto conv_problem : pruned_problem_vector) {
// Skip blacklist and avoid duplicate problem sizes
if (std::find(conv_blacklist_sizes.begin(), conv_blacklist_sizes.end(), conv_problem) != conv_blacklist_sizes.end() ||
std::find(conv_tested_sizes.begin(), conv_tested_sizes.end(), conv_problem) != conv_tested_sizes.end()) {
continue;
}
//
// Test
//
// push back tested problem size to avoid re-running duplicates
conv_tested_sizes.push_back(conv_problem);
// test mode = xcross
passed &= testbed.run(conv_problem);
if (!passed) {
return false;
}
// test mode = convolution
passed &= testbed.run(conv_problem.reset_mode(cutlass::conv::Mode::kConvolution));
if (!passed) {
return false;
}
}
}
return passed;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace device
} // namespace conv
} // namespace test
/////////////////////////////////////////////////////////////////////////////////////////////////