minor chagnes (#730)

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
This commit is contained in:
Haicheng Wu 2022-12-10 14:44:53 -05:00 committed by GitHub
parent 38193d76e3
commit 3f2bb17722
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 8 additions and 13 deletions

View File

@ -660,10 +660,10 @@ private:
LayoutO layout_O(ldo_host.at(i));
MatrixCoord extent_Q{problem0.m(), problem0.k()};
MatrixCoord extent_K{problem0.n(), problem0.k()};
MatrixCoord extent_K{problem0.k(), problem0.n()};
MatrixCoord extent_P{problem0.m(), problem0.n()};
MatrixCoord extent_V{problem1.k(), problem1.n()};
MatrixCoord extent_O{problem1.m(), problem1.k()};
MatrixCoord extent_O{problem1.m(), problem1.n()};
cutlass::TensorView<ElementQ, LayoutQ> view_Q(block_Q.get() + offset_Q.at(i), layout_Q, extent_Q);
cutlass::TensorView<ElementK, LayoutK> view_K(block_K.get() + offset_K.at(i), layout_K, extent_K);
@ -707,7 +707,6 @@ private:
int n_dim = options.use_mask ? options.problem_sizes0_real.at(i).n() : problem0.n();
// Compute softmax for referece matrix
// Assumed a row-major storage
for (int m = 0; m < problem0.m(); m++) {
int n_dim_row = n_dim;
if (options.causal) {
@ -737,7 +736,6 @@ private:
for (int n = n_dim_row; n < n_dim; ++n) {
view_Ref_host.ref().at({m, n}) = ElementP(0);
}
}
// when not using mask, problem_real and problem share the same sizes
@ -798,7 +796,6 @@ private:
return passed;
}
}
return passed;
@ -808,7 +805,7 @@ public:
/// Executes a CUTLASS Attention kernel and measures runtime.
Result profile_grouped() {
Result profile() {
Result result;
result.passed = false;
@ -886,7 +883,7 @@ public:
}
//
// Warm-up run of the grouped GEMM object
// Warm-up run
//
kernel_fn<<<p.getBlocksGrid(), p.getThreadsGrid(), smem_bytes>>>(p);
@ -975,8 +972,6 @@ public:
return result;
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
@ -1002,7 +997,7 @@ int run_attention(Options& options) {
TestbedAttention<Attention> testbed(options);
Result result = testbed.profile_grouped();
Result result = testbed.profile();
if (!result.passed) {
std::cout << "Profiling CUTLASS attention has failed.\n";
std::cout << "\nFailed\n";

View File

@ -741,7 +741,7 @@ private:
LayoutO layout_O(ldo_host.at(i));
MatrixCoord extent_Q{problem0.m(), problem0.k()};
MatrixCoord extent_K{problem0.n(), problem0.k()};
MatrixCoord extent_K{problem0.k(), problem0.n()};
MatrixCoord extent_P{problem0.m(), problem0.n()};
MatrixCoord extent_V{problem1.k(), problem1.n()};
MatrixCoord extent_O{problem1.m(), problem1.n()};
@ -789,7 +789,6 @@ private:
int n_dim = options.use_mask ? options.problem_sizes0_real.at(i).n() : problem0.n();
// Compute softmax for reference matrix
// Assumed a row-major storage
for (int m = 0; m < problem0.m(); m++) {
int n_dim_row = n_dim;
if (options.causal) {

View File

@ -165,6 +165,7 @@ struct AttentionKernel {
CUTLASS_HOST_DEVICE int32_t o_strideM() const {
return head_dim_value;
}
// Moves pointers to what we should process
// Returns "false" if there is no work to do
CUTLASS_DEVICE bool advance_to_block() {