Merge pull request #193 from Peter9606/public_shape_type_from_Mma_HFMA2
HFMA2 Convolutions for SM60 onwards
This commit is contained in:
commit
50bf00e5f2
@ -70,15 +70,17 @@ struct Mma_HFMA2;
|
||||
// Specialization for NNN //
|
||||
/////////////////////////////
|
||||
|
||||
template <typename Shape>
|
||||
template <typename Shape_>
|
||||
struct Mma_HFMA2 <
|
||||
Shape,
|
||||
Shape_,
|
||||
layout::ColumnMajor,
|
||||
layout::ColumnMajor,
|
||||
layout::ColumnMajor,
|
||||
true
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kM % 2),
|
||||
"Mma_HFMA2 requires the M dimension to be divisible by 2."
|
||||
@ -159,15 +161,17 @@ struct Mma_HFMA2 <
|
||||
// Specialization for NNT //
|
||||
/////////////////////////////
|
||||
|
||||
template <typename Shape>
|
||||
template <typename Shape_>
|
||||
struct Mma_HFMA2<
|
||||
Shape,
|
||||
Shape_,
|
||||
layout::ColumnMajor,
|
||||
layout::ColumnMajor,
|
||||
layout::RowMajor,
|
||||
true
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kN % 2),
|
||||
"Mma_HFMA2 requires the N dimension to be divisible by 2."
|
||||
@ -253,15 +257,17 @@ struct Mma_HFMA2<
|
||||
// Specialization for NTN //
|
||||
/////////////////////////////
|
||||
|
||||
template <typename Shape>
|
||||
template <typename Shape_>
|
||||
struct Mma_HFMA2 <
|
||||
Shape,
|
||||
Shape_,
|
||||
layout::ColumnMajor,
|
||||
layout::RowMajor,
|
||||
layout::ColumnMajor,
|
||||
true
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kM % 2),
|
||||
"Mma_HFMA2 requires the GEMM M dimension to be divisible by 2."
|
||||
@ -342,15 +348,17 @@ struct Mma_HFMA2 <
|
||||
// Specialization for NTT //
|
||||
/////////////////////////////
|
||||
|
||||
template <typename Shape>
|
||||
template <typename Shape_>
|
||||
struct Mma_HFMA2<
|
||||
Shape,
|
||||
Shape_,
|
||||
layout::ColumnMajor,
|
||||
layout::RowMajor,
|
||||
layout::RowMajor,
|
||||
true
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kN % 2),
|
||||
"Mma_HFMA2 requires the N dimension to be divisible by 2."
|
||||
@ -431,15 +439,17 @@ struct Mma_HFMA2<
|
||||
// Specialization for TNN //
|
||||
/////////////////////////////
|
||||
|
||||
template <typename Shape>
|
||||
template <typename Shape_>
|
||||
struct Mma_HFMA2 <
|
||||
Shape,
|
||||
Shape_,
|
||||
layout::RowMajor,
|
||||
layout::ColumnMajor,
|
||||
layout::ColumnMajor,
|
||||
true
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kM % 2),
|
||||
"Mma_HFMA2 requires the M dimension to be divisible by 2."
|
||||
@ -524,15 +534,17 @@ struct Mma_HFMA2 <
|
||||
// Specialization for TNT //
|
||||
/////////////////////////////
|
||||
|
||||
template <typename Shape>
|
||||
template <typename Shape_>
|
||||
struct Mma_HFMA2 <
|
||||
Shape,
|
||||
Shape_,
|
||||
layout::RowMajor,
|
||||
layout::ColumnMajor,
|
||||
layout::RowMajor,
|
||||
true
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kN % 2),
|
||||
"Mma_HFMA2 requires the N dimension to be divisible by 2."
|
||||
@ -617,15 +629,17 @@ struct Mma_HFMA2 <
|
||||
// Specialization for TTN //
|
||||
/////////////////////////////
|
||||
|
||||
template <typename Shape>
|
||||
template <typename Shape_>
|
||||
struct Mma_HFMA2 <
|
||||
Shape,
|
||||
Shape_,
|
||||
layout::RowMajor,
|
||||
layout::RowMajor,
|
||||
layout::ColumnMajor,
|
||||
true
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kM % 2),
|
||||
"Mma_HFMA2 requires the M dimension to be divisible by 2."
|
||||
@ -711,15 +725,17 @@ struct Mma_HFMA2 <
|
||||
// Specialization for TTT //
|
||||
/////////////////////////////
|
||||
|
||||
template <typename Shape>
|
||||
template <typename Shape_>
|
||||
struct Mma_HFMA2<
|
||||
Shape,
|
||||
Shape_,
|
||||
layout::RowMajor,
|
||||
layout::RowMajor,
|
||||
layout::RowMajor,
|
||||
true
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kN % 2),
|
||||
"Mma_HFMA2 requires the N dimension to be divisible by 2."
|
||||
@ -800,15 +816,17 @@ struct Mma_HFMA2<
|
||||
// Specialization for TNT + Inner Product or 1x1x2K + LayoutC = T //
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename Shape, typename LayoutA, typename LayoutB>
|
||||
template <typename Shape_, typename LayoutA, typename LayoutB>
|
||||
struct Mma_HFMA2<
|
||||
Shape,
|
||||
Shape_,
|
||||
LayoutA,
|
||||
LayoutB,
|
||||
layout::RowMajor,
|
||||
false
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kK % 2),
|
||||
"Mma_HFMA2 requires the K dimension to be divisible by 2."
|
||||
@ -882,15 +900,17 @@ struct Mma_HFMA2<
|
||||
// Specialization for TNN + Inner Product or 1x1x2K + LayoutC = N //
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename Shape, typename LayoutA, typename LayoutB>
|
||||
template <typename Shape_, typename LayoutA, typename LayoutB>
|
||||
struct Mma_HFMA2<
|
||||
Shape,
|
||||
Shape_,
|
||||
LayoutA,
|
||||
LayoutB,
|
||||
layout::ColumnMajor,
|
||||
false
|
||||
> {
|
||||
|
||||
using Shape = Shape_;
|
||||
|
||||
static_assert(
|
||||
!(Shape::kK % 2),
|
||||
"Mma_HFMA2 requires the K dimension to be divisible by 2."
|
||||
|
@ -101,6 +101,9 @@ cutlass_test_unit_add_executable(
|
||||
conv2d_fprop_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
|
||||
conv2d_dgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
|
||||
conv2d_wgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
|
||||
|
||||
# F16
|
||||
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu
|
||||
)
|
||||
|
||||
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
|
||||
|
@ -0,0 +1,128 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Tests for device-wide Implicit GEMM interface
|
||||
*/
|
||||
|
||||
#include "../../common/cutlass_unit_test.h"
|
||||
#include "cutlass/cutlass.h"
|
||||
|
||||
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "conv2d_testbed.h"
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
TEST(SM60_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_simt_f16,
|
||||
128x128_8x2_64x64x8) {
|
||||
|
||||
/// Conv operation element types for the Gemm equivalent (ImplicitGemm)
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
|
||||
/// Device-level Conv2d instance
|
||||
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA,
|
||||
cutlass::layout::TensorNHWC,
|
||||
ElementB,
|
||||
cutlass::layout::TensorNHWC,
|
||||
ElementC,
|
||||
cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassSimt,
|
||||
cutlass::arch::Sm60,
|
||||
cutlass::gemm::GemmShape<128, 128, 8>,
|
||||
cutlass::gemm::GemmShape<64, 64, 8>,
|
||||
cutlass::gemm::GemmShape<1, 1, 1>,
|
||||
cutlass::epilogue::thread::LinearCombination<
|
||||
ElementC,
|
||||
1,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kAnalytic
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
||||
|
||||
/// Run all unit test sizes with device-level Conv2d instance
|
||||
EXPECT_TRUE(test::conv::device::TestAllConv2d<Conv2dFprop>());
|
||||
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(SM60_Device_Conv2d_Fprop_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_simt_f16,
|
||||
128x128_8x2_64x64x8) {
|
||||
|
||||
/// Conv operation element types for the Gemm equivalent (ImplicitGemm)
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementAccumulator = cutlass::half_t;
|
||||
using ElementCompute = cutlass::half_t;
|
||||
|
||||
|
||||
/// Device-level Conv2d instance
|
||||
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA,
|
||||
cutlass::layout::TensorNHWC,
|
||||
ElementB,
|
||||
cutlass::layout::TensorNHWC,
|
||||
ElementC,
|
||||
cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassSimt,
|
||||
cutlass::arch::Sm60,
|
||||
cutlass::gemm::GemmShape<128, 128, 8>,
|
||||
cutlass::gemm::GemmShape<64, 64, 8>,
|
||||
cutlass::gemm::GemmShape<1, 1, 1>,
|
||||
cutlass::epilogue::thread::LinearCombination<
|
||||
ElementC,
|
||||
1,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<4>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
||||
|
||||
/// Run all unit test sizes with device-level Conv2d instance
|
||||
EXPECT_TRUE(test::conv::device::TestAllConv2d<Conv2dFprop>());
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user