Update functionality.md
add some explanations to the functionality table.
This commit is contained in:
parent
1604ebaf10
commit
57551902d0
@ -9,6 +9,23 @@
|
||||
The following table summarizes device-level GEMM kernels in CUTLASS, organized by opcode class, data type, and layout.
|
||||
Hyperlinks to relevant unit tests demonstrate how specific template instances may be defined.
|
||||
|
||||
- N - Column Major Matrix
|
||||
- T - Row Major matrix
|
||||
- {N,T} x {N,T} - All combinations, i.e. NN, NT, TN, TT
|
||||
- [NHWC](/include/cutlass/layout/tensor.h#L63-206) - 4 dimension tensor used for convolution
|
||||
- [NCxHWx](/include/cutlass/layout/tensor.h#L290-395) - Interleaved 4 dimension tensor used for convolution
|
||||
- f - float point
|
||||
- s - signed int
|
||||
- b - bit
|
||||
- cf - complex float
|
||||
- bf16 - bfloat16
|
||||
- tf32 - tfloat32
|
||||
- Simt - Use Simt CUDA Core MMA
|
||||
- TensorOp - Use Tensor Core MMA
|
||||
- SpTensorOp - Use Sparse Tensor Core MMA
|
||||
- WmmaTensorOp - Use WMMA abstraction to use Tensor Core MMA
|
||||
|
||||
|
||||
|**Opcode Class** | **Compute Capability** | **CUDA Toolkit** | **Data Type** | **Layouts** | **Unit Test** |
|
||||
|-----------------|------------------------|------------------|--------------------------------|------------------------|------------------|
|
||||
| **Simt** | 50,60,61,70,75 | 9.2+ | `f32 * f32 + f32 => f32` | {N,T} x {N,T} => {N,T} | [example](/test/unit/gemm/device/simt_sgemm_nt_sm50.cu) |
|
||||
|
Loading…
Reference in New Issue
Block a user