commit
6a1064093f
@ -23,6 +23,7 @@ Scott Yokim
|
||||
Markus Hohnerbach
|
||||
Aditya Atluri
|
||||
David Tanner
|
||||
Manikandan Ananth
|
||||
|
||||
## CONTRIBUTORS
|
||||
Timothy Costa
|
||||
|
@ -148,7 +148,6 @@ cudaError_t CutlassSgemmNN(
|
||||
/// Kernel to initialize a matrix with small integers.
|
||||
__global__ void InitializeMatrix_kernel(
|
||||
float *matrix,
|
||||
int ldm,
|
||||
int rows,
|
||||
int columns,
|
||||
int seed = 0) {
|
||||
@ -157,7 +156,7 @@ __global__ void InitializeMatrix_kernel(
|
||||
int j = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
|
||||
if (i < rows && j < columns) {
|
||||
int offset = i + j * ldm;
|
||||
int offset = i + j * rows;
|
||||
|
||||
// Generate arbitrary elements.
|
||||
int const k = 16807;
|
||||
@ -169,7 +168,7 @@ __global__ void InitializeMatrix_kernel(
|
||||
}
|
||||
|
||||
/// Simple function to initialize a matrix to arbitrary small integers.
|
||||
cudaError_t InitializeMatrix(float *matrix, int ldm, int rows, int columns, int seed = 0) {
|
||||
cudaError_t InitializeMatrix(float *matrix, int rows, int columns, int seed = 0) {
|
||||
|
||||
dim3 block(16, 16);
|
||||
dim3 grid(
|
||||
@ -177,7 +176,7 @@ cudaError_t InitializeMatrix(float *matrix, int ldm, int rows, int columns, int
|
||||
(columns + block.y - 1) / block.y
|
||||
);
|
||||
|
||||
InitializeMatrix_kernel<<< grid, block >>>(matrix, ldm, rows, columns, seed);
|
||||
InitializeMatrix_kernel<<< grid, block >>>(matrix, rows, columns, seed);
|
||||
|
||||
return cudaGetLastError();
|
||||
}
|
||||
@ -185,10 +184,10 @@ cudaError_t InitializeMatrix(float *matrix, int ldm, int rows, int columns, int
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Allocates device memory for a matrix then fills with arbitrary small integers.
|
||||
cudaError_t AllocateMatrix(float **matrix, int ldm, int rows, int columns, int seed = 0) {
|
||||
cudaError_t AllocateMatrix(float **matrix, int rows, int columns, int seed = 0) {
|
||||
cudaError_t result;
|
||||
|
||||
size_t sizeof_matrix = sizeof(float) * ldm * columns;
|
||||
size_t sizeof_matrix = sizeof(float) * columns;
|
||||
|
||||
// Allocate device memory.
|
||||
result = cudaMalloc(reinterpret_cast<void **>(matrix), sizeof_matrix);
|
||||
@ -209,7 +208,7 @@ cudaError_t AllocateMatrix(float **matrix, int ldm, int rows, int columns, int s
|
||||
}
|
||||
|
||||
// Initialize matrix elements to arbitrary small integers.
|
||||
result = InitializeMatrix(*matrix, ldm, rows, columns, seed);
|
||||
result = InitializeMatrix(*matrix, rows, columns, seed);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
std::cerr << "Failed to initialize matrix: "
|
||||
@ -304,20 +303,20 @@ cudaError_t TestCutlassGemm(int M, int N, int K, float alpha, float beta) {
|
||||
// Allocate matrices in GPU device memory with arbitrary seeds.
|
||||
//
|
||||
|
||||
result = AllocateMatrix(&A, lda, M, K, 0);
|
||||
result = AllocateMatrix(&A, M, K, 0);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
return result;
|
||||
}
|
||||
|
||||
result = AllocateMatrix(&B, ldb, K, N, 17);
|
||||
result = AllocateMatrix(&B, K, N, 17);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
cudaFree(A);
|
||||
return result;
|
||||
}
|
||||
|
||||
result = AllocateMatrix(&C_cutlass, ldc, M, N, 101);
|
||||
result = AllocateMatrix(&C_cutlass, M, N, 101);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
cudaFree(A);
|
||||
@ -325,7 +324,7 @@ cudaError_t TestCutlassGemm(int M, int N, int K, float alpha, float beta) {
|
||||
return result;
|
||||
}
|
||||
|
||||
result = AllocateMatrix(&C_reference, ldc, M, N, 101);
|
||||
result = AllocateMatrix(&C_reference, M, N, 101);
|
||||
|
||||
if (result != cudaSuccess) {
|
||||
cudaFree(A);
|
||||
|
@ -223,11 +223,14 @@ public:
|
||||
intermediate = mul_accumulator(alpha_, converted_accumulator); // D = alpha * Accum
|
||||
|
||||
/// Clamping constant value
|
||||
ElementCompute const kClamp =
|
||||
ElementCompute((1U << (sizeof_bits<ElementOutput>::value - 1)) - 1);
|
||||
ElementCompute const kClampMax =
|
||||
ElementCompute(platform::numeric_limits<ElementOutput>::max());
|
||||
|
||||
intermediate = max_accumulator(intermediate, -kClamp - ElementCompute(1));
|
||||
intermediate = min_accumulator(intermediate, kClamp);
|
||||
ElementCompute const kClampMin =
|
||||
ElementCompute(platform::numeric_limits<ElementOutput>::lowest());
|
||||
|
||||
intermediate = max_accumulator(intermediate, kClampMin);
|
||||
intermediate = min_accumulator(intermediate, kClampMax);
|
||||
|
||||
// Convert to destination numeric type
|
||||
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
|
||||
|
Loading…
Reference in New Issue
Block a user