Adding more Threadblock Tiles for Mixed-input TensorOp (BF16 * S8) in cutlass_library (#1132)

* Adding more tiles in the cutlass_library for mixed-input support.

* fix rebase issue

* more tiles to upcast a
This commit is contained in:
Manish Gupta 2023-10-13 08:33:15 -07:00 committed by GitHub
parent fa8dfe631f
commit 757275f279
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 830 additions and 20 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
# PyCache files
__pycache__/
cutlass_library.egg-info/

View File

@ -107,7 +107,7 @@ def CreateGemmOperator(manifest, layouts, tile_descriptions, data_type, \
# If alignment is a tuple or a list, then we have different alignments for A and B
alignment_a = alignment if isinstance(alignment, int) else alignment[0]
alignment_b = alignment if isinstance(alignment, int) else alignment[1]
alignment_c = min(8, alignment_a)
alignment_c = min(8, alignment_a) if isinstance(alignment, int) else alignment[2]
A = TensorDescription(element_a, layout[0], alignment_a, complex_transform[0])
B = TensorDescription(element_b, layout[1], alignment_b, complex_transform[1])
@ -2155,7 +2155,7 @@ def GenerateSM80_PlanarComplexTensorOp_16816(manifest, cuda_version):
#
def GenerateSM80_MixedInputTensorOp_16816(manifest, cuda_version):
def GenerateSM80_TensorOp_16816_mixed_input_upcast_a(manifest, cuda_version):
if not CudaToolkitVersionSatisfies(cuda_version, 11, 0):
return
@ -2196,27 +2196,66 @@ def GenerateSM80_MixedInputTensorOp_16816(manifest, cuda_version):
min_cc = 80
max_cc = 1024
# For mixed-input alignment constraints are a list of lists, where the inner list
# contains the alignment constraints for [operandA, operandB].
alignment_constraints = [[16, 8],]
# For mixed-input alignment constraints are a list of lists, where the
# inner list contains the alignment constraints for operands/matrices
# [[alignA, alignB, alignC],..]
alignment_constraints = [[16, 8, 8],]
for math_inst in math_instructions:
tile_descriptions = [
# 128x128
TileDescription([128, 128, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x64
TileDescription([128, 64, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x32
TileDescription([128, 32, 64], 9, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 32, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x16
TileDescription([128, 16, 64], 5, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 64], 3, [2, 1, 1], math_inst, min_cc, max_cc),
]
data_type = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_b,
math_inst.element_accumulator,
math_inst.element_accumulator,
]
CreateGemmOperator(manifest, layouts, tile_descriptions, \
data_type, alignment_constraints)
# Upcast on Operand B
# Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation)
if math_inst.element_a != math_inst.element_accumulator:
data_type_mixed = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_b,
math_inst.element_accumulator,
]
operations = CreateGemmOperator(manifest, layouts, tile_descriptions, \
data_type_mixed, alignment_constraints)
for op in operations:
if op.tile_description.threadblock_shape[1] <= 32:
op.C.alignment = 4
#
def GenerateSM80_TensorOp_16816_mixed_input_upcast_b(manifest, cuda_version):
if not CudaToolkitVersionSatisfies(cuda_version, 11, 0):
return
layouts = [
(LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor),
]
math_instructions = [
MathInstruction( \
[16, 8, 16], \
@ -2243,26 +2282,64 @@ def GenerateSM80_MixedInputTensorOp_16816(manifest, cuda_version):
min_cc = 80
max_cc = 1024
# For mixed-input alignment constraints are a list of lists, where the inner list
# contains the alignment constraints for [operandA, operandB].
alignment_constraints = [[8, 16],]
# For mixed-input alignment constraints are a list of lists, where the
# inner list contains the alignment constraints for operands/matrices
# [[alignA, alignB, alignC],..]
alignment_constraints = [[8, 16, 8],]
for math_inst in math_instructions:
tile_descriptions = [
# 128x128
TileDescription([128, 128, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x64
TileDescription([128, 64, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x32
TileDescription([128, 32, 64], 9, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 32, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 32, 32], 9, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 32, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x16
TileDescription([128, 16, 64], 5, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 64], 3, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 32], 9, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 32], 5, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 32], 3, [2, 1, 1], math_inst, min_cc, max_cc),
# 256x16
TileDescription([256, 16, 32], 5, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([256, 16, 32], 3, [2, 1, 1], math_inst, min_cc, max_cc),
]
data_type = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_a,
math_inst.element_accumulator,
math_inst.element_accumulator,
]
CreateGemmOperator(manifest, layouts, tile_descriptions, \
data_type, alignment_constraints)
# Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation)
if math_inst.element_a != math_inst.element_accumulator:
data_type_mixed = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_a,
math_inst.element_accumulator,
]
operations = CreateGemmOperator(manifest, layouts, tile_descriptions, \
data_type_mixed, alignment_constraints)
for op in operations:
if op.tile_description.threadblock_shape[1] <= 32:
op.C.alignment = 4
#
def GenerateSM80_TensorOp_16832_TN(manifest, cuda_version):
@ -2645,7 +2722,6 @@ def GenerateSM80_TensorOp_16864_Interleaved(manifest, cuda_version):
for op in operations:
op.C.alignment = 16
#
#
def GenerateSM80_TensorOp_168256(manifest, cuda_version):
@ -4196,7 +4272,8 @@ def GenerateSM80(manifest, cuda_version):
GenerateSM80_TensorOp_884_symm(manifest, cuda_version)
GenerateSM80_TensorOp_884_symm_complex(manifest, cuda_version)
GenerateSM80_TensorOp_884_symm_complex_gaussian(manifest, cuda_version)
GenerateSM80_MixedInputTensorOp_16816(manifest, cuda_version)
GenerateSM80_TensorOp_16816_mixed_input_upcast_a(manifest, cuda_version)
GenerateSM80_TensorOp_16816_mixed_input_upcast_b(manifest, cuda_version)
GenerateSM80_TensorOp_16832_TN(manifest, cuda_version)
GenerateSM80_SparseTensorOp_16864_TN(manifest, cuda_version)
GenerateSM80_TensorOp_16832_Interleaved(manifest, cuda_version)

View File

@ -350,10 +350,12 @@ cutlass_test_unit_add_executable(
# Upcast on Operand A
gemm_universal_u8t_f16n_f16t_mixed_input_tensor_op_f16_sm80.cu
gemm_universal_s8t_f16n_f16t_mixed_input_tensor_op_f16_sm80.cu
gemm_universal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32_sm80.cu
# Upcast on Operand B
gemm_universal_f16t_u8n_f16t_mixed_input_tensor_op_f16_sm80.cu
gemm_universal_f16t_s8n_f16t_mixed_input_tensor_op_f16_sm80.cu
gemm_universal_bf16t_s8n_bf16t_mixed_input_tensor_op_f32_sm80.cu
)
cutlass_test_unit_add_executable(

View File

@ -0,0 +1,278 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#include <iostream>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm_universal.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/host/gemm.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/tensor_view_io.h"
#include "testbed_universal.h"
////////////////////////////////////////////////////////////////////////////////
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_bf16t_s8n_bf16t_mixed_input_tensor_op_f32, 128x128x64_64x64x64) {
using ElementA = cutlass::bfloat16_t;
using ElementB = int8_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 128, 64>,
cutlass::gemm::GemmShape<64, 64, 64>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4, // Stages
8, // AlignmentA
16, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_bf16t_s8n_bf16t_mixed_input_tensor_op_f32, 128x128x32_64x64x32) {
using ElementA = cutlass::bfloat16_t;
using ElementB = int8_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 128, 32>,
cutlass::gemm::GemmShape<64, 64, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4, // Stages
8, // AlignmentA
16, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_bf16t_s8n_bf16t_mixed_input_tensor_op_f32, 64x128x32_32x64x32) {
using ElementA = cutlass::bfloat16_t;
using ElementB = int8_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<64, 128, 32>,
cutlass::gemm::GemmShape<32, 64, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4, // Stages
8, // AlignmentA
16, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_bf16t_s8n_bf16t_mixed_input_tensor_op_f32, 128x64x32_64x32x32) {
using ElementA = cutlass::bfloat16_t;
using ElementB = int8_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 64, 32>,
cutlass::gemm::GemmShape<64, 32, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
8, // Stages
8, // AlignmentA
16, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_bf16t_s8n_bf16t_mixed_input_tensor_op_f32, 64x64x32_32x32x32) {
using ElementA = cutlass::bfloat16_t;
using ElementB = int8_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<64, 64, 32>,
cutlass::gemm::GemmShape<32, 32, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
8, // Stages
8, // AlignmentA
16, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_bf16t_s8n_bf16t_mixed_input_tensor_op_f32, 16x128x32_16x64x32) {
using ElementA = cutlass::bfloat16_t;
using ElementB = int8_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<16, 128, 32>,
cutlass::gemm::GemmShape<16, 64, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
8, // Stages
8, // AlignmentA
16, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
#endif // #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
////////////////////////////////////////////////////////////////////////////////

View File

@ -56,7 +56,7 @@
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_f16t_s8t_f16t_mixed_input_tensor_op_f16, 128x128x64_64x64x64) {
TEST(SM80_Device_GemmUniversal_f16t_s8n_f16t_mixed_input_tensor_op_f16, 128x128x64_64x64x64) {
using ElementA = cutlass::half_t;
using ElementB = int8_t;

View File

@ -0,0 +1,384 @@
/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Tests for device-wide GEMM interface
*/
#include <iostream>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm_universal.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/host/gemm.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/tensor_view_io.h"
#include "testbed_universal.h"
////////////////////////////////////////////////////////////////////////////////
#if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 128x128x64_64x64x64) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 128, 64>,
cutlass::gemm::GemmShape<64, 64, 64>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 128x128x32_64x64x32) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 128, 32>,
cutlass::gemm::GemmShape<64, 64, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 64x128x32_32x64x32) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<64, 128, 32>,
cutlass::gemm::GemmShape<32, 64, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 64x64x32_32x32x32) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<64, 64, 32>,
cutlass::gemm::GemmShape<32, 32, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
8, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 128x64x32_64x32x32) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 64, 32>,
cutlass::gemm::GemmShape<64, 32, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
8, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 128x64x32_64x64x32) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 64, 32>,
cutlass::gemm::GemmShape<64, 64, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
8, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 128x32x32_64x32x32) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 32, 32>,
cutlass::gemm::GemmShape<64, 32, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
8, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 128x16x32_64x16x32) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 16, 32>,
cutlass::gemm::GemmShape<64, 16, 32>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 4,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32, 128x16x64_64x16x64) {
using ElementA = int8_t;
using ElementB = cutlass::bfloat16_t;
using ElementOutput = cutlass::bfloat16_t;
using ElementAccumulator = float;
using Gemm = cutlass::gemm::device::GemmUniversal<
ElementA,
cutlass::layout::RowMajor,
ElementB,
cutlass::layout::ColumnMajor,
ElementOutput,
cutlass::layout::RowMajor,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm80,
cutlass::gemm::GemmShape<128, 16, 64>,
cutlass::gemm::GemmShape<64, 16, 64>,
cutlass::gemm::GemmShape<16, 8, 16>,
cutlass::epilogue::thread::LinearCombination<
ElementOutput, 4,
ElementAccumulator, ElementAccumulator>,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
4, // Stages
16, // AlignmentA
8, // AlignmentB
cutlass::arch::OpMultiplyAddMixedInputUpcast,
cutlass::ComplexTransform::kNone,
cutlass::ComplexTransform::kNone
>;
EXPECT_TRUE(test::gemm::device::TestAllGemmUniversal<Gemm>());
}
////////////////////////////////////////////////////////////////////////////////
#endif // #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED)
////////////////////////////////////////////////////////////////////////////////

View File

@ -56,7 +56,7 @@
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_Device_GemmUniversal_s8t_f16t_f16t_mixed_input_tensor_op_f16, 128x128x64_64x64x64) {
TEST(SM80_Device_GemmUniversal_s8t_f16n_f16t_mixed_input_tensor_op_f16, 128x128x64_64x64x64) {
using ElementA = int8_t;
using ElementB = cutlass::half_t;

View File

@ -75,7 +75,6 @@ TEST(SM80_warp_gemm_mixed_input_tensor_op_crosswise_f16_i8, 128x128x64_64x64x64_
.run();
}
TEST(SM80_warp_gemm_mixed_input_tensor_op_crosswise_f16_i8, 64x64x64_64x64x64_16x8x16) {
using Shape = cutlass::gemm::GemmShape<64, 64, 64>;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
@ -140,7 +139,6 @@ TEST(SM80_warp_gemm_mixed_input_tensor_op_crosswise_i8_f16, 64x64x64_64x64x64_16
.run();
}
////////////////////////////////////////////////////////////////////////////////
/// F32 <= F16 * U8 + F32 (Upcast on Operand B)
////////////////////////////////////////////////////////////////////////////////
@ -227,6 +225,7 @@ TEST(SM80_warp_gemm_mixed_input_tensor_op_crosswise_u8_f16, 128x128x64_64x64x64_
.run();
}
////////////////////////////////////////////////////////////////////////////////
/// F32 <= B16 * U8 + F32 (Upcast on Operand B)
////////////////////////////////////////////////////////////////////////////////
@ -251,7 +250,7 @@ TEST(SM80_warp_gemm_mixed_input_tensor_op_crosswise_bf16_u8, 64x64x64_64x64x64_1
}
////////////////////////////////////////////////////////////////////////////////
/// F32 <= B16 * U8 + F32 (Upcast on Operand B)
/// F32 <= U8 * BF16 + F32 (Upcast on Operand A)
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_warp_gemm_mixed_input_tensor_op_crosswise_u8_bf16, 64x64x64_64x64x64_16x8x16) {
using Shape = cutlass::gemm::GemmShape<64, 64, 64>;
@ -297,7 +296,7 @@ TEST(SM80_warp_gemm_mixed_input_tensor_op_crosswise_bf16_i8, 64x64x64_64x64x64_1
}
////////////////////////////////////////////////////////////////////////////////
/// F32 <= B16 * I8 + F32 (Upcast on Operand B)
/// F32 <= I8 * BF16 + F32 (Upcast on Operand A)
////////////////////////////////////////////////////////////////////////////////
TEST(SM80_warp_gemm_mixed_input_tensor_op_crosswise_i8_bf16, 64x64x64_64x64x64_16x8x16) {
using Shape = cutlass::gemm::GemmShape<64, 64, 64>;

View File

@ -215,6 +215,18 @@ struct GemmPreferenceKey {
return compute_capability == rhs.compute_capability;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
inline
std::ostream& operator<< (std::ostream& out, const cutlass::library::GemmPreferenceKey& key) {
out << "{\n"
<< "compute_capability : " << key.compute_capability << std::endl
<< "alignment : " << key.alignment << std::endl
<< "}";
return out;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -172,6 +172,7 @@ enum class MathOperationID {
kAdd,
kMultiplyAdd,
kMultiplyAddSaturate,
kMultiplyAddMixedInputUpcast,
kMultiplyAddFastBF16,
kMultiplyAddFastF16,
kMultiplyAddFastF32,

View File

@ -174,6 +174,10 @@ template <> struct MathOperationMap<cutlass::arch::OpMultiplyAddSaturate> {
static MathOperationID const kId = MathOperationID::kMultiplyAddSaturate;
};
template <> struct MathOperationMap<cutlass::arch::OpMultiplyAddMixedInputUpcast> {
static MathOperationID const kId = MathOperationID::kMultiplyAddMixedInputUpcast;
};
template <> struct MathOperationMap<cutlass::arch::OpMultiplyAddComplex> {
static MathOperationID const kId = MathOperationID::kMultiplyAddComplex;
};

View File

@ -44,6 +44,7 @@ namespace library {
///////////////////////////////////////////////////////////////////////////////////////////////
void initialize_reduce_add_linear_combination_f16_f16_f16(Manifest &manifest);
void initialize_reduce_add_linear_combination_f32_f32_f16(Manifest &manifest);
void initialize_reduce_add_linear_combination_f32_f32_bf16(Manifest &manifest);
void initialize_reduce_add_linear_combination_f32_f32_f32(Manifest &manifest);
void initialize_reduce_add_linear_combination_f64_f64_f64(Manifest &manifest);
void initialize_reduce_add_linear_combination_cf32_cf32_cf32(Manifest &manifest);
@ -55,6 +56,7 @@ void initialize_all_reduction_op(Manifest &manifest) {
initialize_reduce_add_linear_combination_f16_f16_f16(manifest);
initialize_reduce_add_linear_combination_f32_f32_f16(manifest);
initialize_reduce_add_linear_combination_f32_f32_bf16(manifest);
initialize_reduce_add_linear_combination_f32_f32_f32(manifest);
initialize_reduce_add_linear_combination_f64_f64_f64(manifest);
initialize_reduce_add_linear_combination_cf32_cf32_cf32(manifest);

View File

@ -112,6 +112,40 @@ void initialize_reduce_add_linear_combination_f32_f32_f16(Manifest &manifest) {
));
}
void initialize_reduce_add_linear_combination_f32_f32_bf16(Manifest &manifest) {
using ElementWorkspace = float;
using ElementAccumulator = float;
using ElementOutput = cutlass::bfloat16_t;
using ElementCompute = float;
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput,
128 / cutlass::sizeof_bits<ElementWorkspace>::value,
ElementAccumulator,
ElementCompute
>;
using ReductionOp = cutlass::reduction::thread::ReduceAdd<
ElementAccumulator,
typename EpilogueOutputOp::ElementAccumulator,
EpilogueOutputOp::kCount
>;
using Operation_reduce_add_linear_combination_f32_f32_bf16 = cutlass::reduction::device::ReduceSplitK<
cutlass::reduction::kernel::ReduceSplitK<
cutlass::MatrixShape<4, 32 * EpilogueOutputOp::kCount>,
EpilogueOutputOp,
ReductionOp
>
>;
manifest.append(new ReductionOperation<
Operation_reduce_add_linear_combination_f32_f32_bf16>(
"reduce_add_linear_combination_f32_f32_bf16"
));
}
void initialize_reduce_add_linear_combination_f32_f32_f32(Manifest &manifest) {

View File

@ -107,7 +107,23 @@ void initialize_gemm_reference_operations_fp_mixed_input(Manifest &manifest) {
make_gemm_real_canonical_layouts<
int8_t,
bfloat16_t,
float,
float,
float
>(manifest);
make_gemm_real_canonical_layouts<
int8_t,
bfloat16_t,
bfloat16_t,
float,
float
>(manifest);
make_gemm_real_canonical_layouts<
bfloat16_t,
uint8_t,
float,
float,
float
>(manifest);