Enable convolution with fused epilogue for Volta Tensor Cores (#402)
* Enabled convolution with epilogue fusion for Volta Tensor Cores. * Compilation fixes * Disabled testing Volta on Ampere architectures.
This commit is contained in:
parent
1e4703cbab
commit
8a951b2940
@ -37,6 +37,10 @@
|
||||
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
|
||||
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
|
||||
#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h"
|
||||
|
||||
#include "cutlass/epilogue/threadblock/default_epilogue_with_broadcast.h"
|
||||
#include "cutlass/epilogue/threadblock/default_epilogue_with_reduction.h"
|
||||
|
||||
#include "cutlass/conv/convolution.h"
|
||||
#include "cutlass/conv/threadblock/conv2d_tile_iterator.h"
|
||||
#include "cutlass/conv/threadblock/implicit_gemm_pipelined.h"
|
||||
@ -96,6 +100,122 @@ struct DefaultConvEpilogue<
|
||||
OutputOp::kCount
|
||||
>::Epilogue;
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename ArchTag,
|
||||
typename Shape,
|
||||
typename WarpMmaTensorOp,
|
||||
int PartitionsK,
|
||||
typename ElementOutput,
|
||||
typename ElementTensor,
|
||||
typename ElementVector,
|
||||
typename OutputOp,
|
||||
int ElementsPerAccess
|
||||
>
|
||||
struct DefaultConvEpilogueWithBroadcastTensorOp {
|
||||
using Epilogue = typename epilogue::threadblock::DefaultEpilogueWithBroadcastTensorOp<
|
||||
Shape,
|
||||
WarpMmaTensorOp,
|
||||
PartitionsK,
|
||||
ElementOutput,
|
||||
ElementTensor,
|
||||
ElementVector,
|
||||
OutputOp,
|
||||
ElementsPerAccess
|
||||
>::Epilogue;
|
||||
};
|
||||
|
||||
template <
|
||||
typename Shape,
|
||||
typename WarpMmaTensorOp,
|
||||
int PartitionsK,
|
||||
typename ElementOutput,
|
||||
typename ElementTensor,
|
||||
typename ElementVector,
|
||||
typename OutputOp,
|
||||
int ElementsPerAccess
|
||||
>
|
||||
struct DefaultConvEpilogueWithBroadcastTensorOp<
|
||||
arch::Sm70,
|
||||
Shape,
|
||||
WarpMmaTensorOp,
|
||||
PartitionsK,
|
||||
ElementOutput,
|
||||
ElementTensor,
|
||||
ElementVector,
|
||||
OutputOp,
|
||||
ElementsPerAccess
|
||||
> {
|
||||
using Epilogue = typename epilogue::threadblock::DefaultEpilogueWithBroadcastVoltaTensorOp<
|
||||
Shape,
|
||||
WarpMmaTensorOp,
|
||||
PartitionsK,
|
||||
ElementOutput,
|
||||
ElementTensor,
|
||||
ElementVector,
|
||||
OutputOp,
|
||||
ElementsPerAccess
|
||||
>::Epilogue;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename ArchTag,
|
||||
typename Shape,
|
||||
typename WarpMmaTensorOp,
|
||||
int PartitionsK,
|
||||
typename ElementOutput,
|
||||
typename OutputOp,
|
||||
typename ReductionOp,
|
||||
int ElementsPerAccess
|
||||
>
|
||||
struct DefaultConvEpilogueWithReductionTensorOp {
|
||||
using Epilogue = typename epilogue::threadblock::DefaultEpilogueWithReductionTensorOp<
|
||||
Shape,
|
||||
WarpMmaTensorOp,
|
||||
PartitionsK,
|
||||
ElementOutput,
|
||||
OutputOp,
|
||||
ReductionOp,
|
||||
ElementsPerAccess
|
||||
>::Epilogue;
|
||||
};
|
||||
|
||||
template <
|
||||
typename Shape,
|
||||
typename WarpMmaTensorOp,
|
||||
int PartitionsK,
|
||||
typename ElementOutput,
|
||||
typename OutputOp,
|
||||
typename ReductionOp,
|
||||
int ElementsPerAccess
|
||||
>
|
||||
struct DefaultConvEpilogueWithReductionTensorOp<
|
||||
arch::Sm70,
|
||||
Shape,
|
||||
WarpMmaTensorOp,
|
||||
PartitionsK,
|
||||
ElementOutput,
|
||||
OutputOp,
|
||||
ReductionOp,
|
||||
ElementsPerAccess
|
||||
> {
|
||||
using Epilogue = typename epilogue::threadblock::DefaultEpilogueWithReductionVoltaTensorOp<
|
||||
Shape,
|
||||
WarpMmaTensorOp,
|
||||
PartitionsK,
|
||||
ElementOutput,
|
||||
OutputOp,
|
||||
ReductionOp,
|
||||
ElementsPerAccess
|
||||
>::Epilogue;
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Defaults for strided Dgrad
|
||||
|
||||
@ -94,7 +94,8 @@ struct DefaultConv2dFpropWithBroadcast {
|
||||
>::Kernel;
|
||||
|
||||
// Replace epilogue
|
||||
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueWithBroadcastTensorOp<
|
||||
using Epilogue = typename cutlass::conv::kernel::detail::DefaultConvEpilogueWithBroadcastTensorOp<
|
||||
ArchTag,
|
||||
typename ImplicitGemmBase::Epilogue::Shape,
|
||||
typename ImplicitGemmBase::Epilogue::WarpMmaOperator,
|
||||
ImplicitGemmBase::Epilogue::kPartitionsK,
|
||||
|
||||
@ -95,7 +95,8 @@ struct DefaultConv2dFpropWithReduction {
|
||||
>::Kernel;
|
||||
|
||||
// Replace epilogue
|
||||
using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueWithReductionTensorOp<
|
||||
using Epilogue = typename cutlass::conv::kernel::detail::DefaultConvEpilogueWithReductionTensorOp<
|
||||
ArchTag,
|
||||
typename ImplicitGemmBase::Epilogue::Shape,
|
||||
typename ImplicitGemmBase::Epilogue::WarpMmaOperator,
|
||||
ImplicitGemmBase::Epilogue::kPartitionsK,
|
||||
|
||||
@ -129,6 +129,7 @@ endif()
|
||||
cutlass_test_unit_add_executable(
|
||||
cutlass_test_unit_conv_device_tensorop_f32_sm70
|
||||
|
||||
conv2d_fprop_with_broadcast_sm70.cu
|
||||
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
|
||||
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
|
||||
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
|
||||
|
||||
@ -76,6 +76,49 @@ TEST(SM70_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tens
|
||||
EXPECT_TRUE(test::conv::device::TestAllConv2d<Conv2dFprop>());
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(SM70_Device_Conv2d_Fprop_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
|
||||
128x128_32x2_64x64x32) {
|
||||
|
||||
/// Conv operation element types for the Gemm equivalent (ImplicitGemm)
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = float;
|
||||
using ElementAccumulator = float;
|
||||
using ElementCompute = float;
|
||||
|
||||
/// Device-level Conv2d instance
|
||||
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm70,
|
||||
cutlass::gemm::GemmShape<128, 128, 32>,
|
||||
cutlass::gemm::GemmShape<64, 64, 32>,
|
||||
cutlass::gemm::GemmShape<8, 8, 4>,
|
||||
cutlass::epilogue::thread::LinearCombination<
|
||||
ElementC,
|
||||
128 / cutlass::sizeof_bits<ElementC>::value,
|
||||
ElementAccumulator,
|
||||
ElementCompute
|
||||
>,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
||||
|
||||
/// Run all unit test sizes with device-level Conv2d instance
|
||||
EXPECT_TRUE(test::conv::device::TestAllConv2d<Conv2dFprop>());
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
#endif // CUTLASS_ARCH_MMA_SM70_SUPPORTED
|
||||
|
||||
121
test/unit/conv/device/conv2d_fprop_with_broadcast_sm70.cu
Normal file
121
test/unit/conv/device/conv2d_fprop_with_broadcast_sm70.cu
Normal file
@ -0,0 +1,121 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2017-2022, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
||||
* provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this list of
|
||||
* conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
||||
* conditions and the following disclaimer in the documentation and/or other materials
|
||||
* provided with the distribution.
|
||||
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
||||
* to endorse or promote products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*! \file
|
||||
\brief Tests for device-wide Implicit GEMM interface
|
||||
*/
|
||||
|
||||
#include "../../common/cutlass_unit_test.h"
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/array.h"
|
||||
#include "cutlass/epilogue/thread/linear_combination_bias_elementwise.h"
|
||||
#include "cutlass/epilogue/thread/linear_combination_residual_block.h"
|
||||
#include "cutlass/epilogue/thread/activation.h"
|
||||
|
||||
#include "cutlass/conv/kernel/default_conv2d_fprop_with_broadcast.h"
|
||||
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
||||
|
||||
#include "conv2d_with_broadcast_testbed.h"
|
||||
|
||||
#if defined(CUTLASS_ARCH_MMA_SM70_SUPPORTED)
|
||||
|
||||
// Test residual block fusion: UnaryOp(BinaryOp(ActivationOp(Conv2d(X) + bias), residual))
|
||||
// LinearCombinationResidualBlock does not support the split-k mode unless ActivationOp is Identity.
|
||||
// This is because the activation needs to be applied to the fully accumulated output of the Conv2d op,
|
||||
// which only the last thread block would have an access to, before applying BinaryOp.
|
||||
// The epilogue functor in the last thread block would have to be given three inputs, namely
|
||||
// partial outputs, bias, and residual, but this is not supported in the current interface.
|
||||
// Set TestSplitK = false to skip split-k tests with non-trivial ActivationOp.
|
||||
template <
|
||||
typename ElementAccumulator,
|
||||
template<typename T> class ActivationOp,
|
||||
template<typename T> class BinaryOp,
|
||||
template<typename T> class UnaryOp,
|
||||
bool TestSplitK = false
|
||||
>
|
||||
void TestResidaulBlock() {
|
||||
using ElementA = cutlass::half_t;
|
||||
using ElementB = cutlass::half_t;
|
||||
using ElementC = cutlass::half_t;
|
||||
using ElementD = ElementC;
|
||||
using ElementCompute = ElementAccumulator;
|
||||
|
||||
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationResidualBlock<
|
||||
ElementD,
|
||||
ElementAccumulator,
|
||||
ElementCompute,
|
||||
ElementC,
|
||||
8,
|
||||
ActivationOp,
|
||||
BinaryOp,
|
||||
UnaryOp
|
||||
>;
|
||||
|
||||
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFpropWithBroadcast<
|
||||
ElementA, cutlass::layout::TensorNHWC,
|
||||
ElementB, cutlass::layout::TensorNHWC,
|
||||
ElementC, cutlass::layout::TensorNHWC,
|
||||
ElementAccumulator,
|
||||
cutlass::arch::OpClassTensorOp,
|
||||
cutlass::arch::Sm70,
|
||||
cutlass::gemm::GemmShape<128, 128, 32>,
|
||||
cutlass::gemm::GemmShape<64, 64, 32>,
|
||||
cutlass::gemm::GemmShape<8, 8, 4>,
|
||||
EpilogueOutputOp,
|
||||
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
||||
2,
|
||||
cutlass::arch::OpMultiplyAdd,
|
||||
cutlass::conv::IteratorAlgorithm::kOptimized
|
||||
>::Kernel;
|
||||
|
||||
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
||||
|
||||
struct ReferenceOp {
|
||||
using OutputOp = typename Conv2dFprop::EpilogueOutputOp;
|
||||
using ElementZ = typename OutputOp::ElementZ;
|
||||
|
||||
ActivationOp<ElementCompute> activation;
|
||||
BinaryOp<ElementCompute> binary_op;
|
||||
UnaryOp<ElementCompute> unary_op;
|
||||
|
||||
void operator()(ElementZ &Z, ElementZ&, ElementCompute conv2d, ElementCompute residual) {
|
||||
Z = ElementZ(unary_op(binary_op(activation(conv2d), residual)));
|
||||
}
|
||||
};
|
||||
|
||||
bool passed = test::conv::device::TestAllConv2dWithBroadcast<Conv2dFprop, ReferenceOp, true, TestSplitK>();
|
||||
EXPECT_TRUE(passed);
|
||||
}
|
||||
|
||||
TEST(SM70_Device_Conv2d_Fprop_With_Residual_Block_Plus_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
|
||||
128x128_32x2_64x64x32) {
|
||||
// Resnet
|
||||
TestResidaulBlock<float, cutlass::epilogue::thread::ReLu, cutlass::plus, cutlass::epilogue::thread::Identity>();
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#endif // CUTLASS_ARCH_MMA_SM70_SUPPORTED
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
Loading…
Reference in New Issue
Block a user