Add epilogue functor for residual block fusion (#391)

* Add epilogue functor for residual block fusion

* Do not run split-k tests when ActivationOp is not Identity

* explain TestSplitK param

* return early
This commit is contained in:
masahi 2021-12-30 12:53:40 +09:00 committed by GitHub
parent f78994bb40
commit c2ee13a0fe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 302 additions and 25 deletions

View File

@ -68,8 +68,8 @@ struct ReLu {
}
CUTLASS_HOST_DEVICE
T operator()(T value) const {
if (value < T()) {
value = T();
if (value < T(0)) {
value = T(0);
}
return value;
}
@ -91,6 +91,21 @@ struct ReLu<Array<T, N>> {
}
return result;
}
CUTLASS_HOST_DEVICE
Array<T, N> operator()(Array<T, N> const &frag) const {
Array<T, N> result;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < N; ++i) {
T value = frag[i];
if (value < T(0)) {
value = T(0);
}
result[i] = value;
}
return result;
}
};
// Sigmoid operator
@ -151,7 +166,8 @@ template <typename T>
struct SiLu {
CUTLASS_HOST_DEVICE
T operator()(T const &scalar) const {
return scalar * Sigmoid<T>(scalar);
Sigmoid<T> sigmoid;
return scalar * sigmoid(scalar);
}
};

View File

@ -0,0 +1,163 @@
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Epilogue functor specialized for residual blocks in deep neural network.
*/
#pragma once
#include "cutlass/array.h"
#include "cutlass/functional.h"
#include "cutlass/numeric_conversion.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace epilogue {
namespace thread {
// /// Models a residual block of the form: UnaryOp(BinaryOp(ActivationOp(TensorOp(X) + bias), residual))
template <typename ElementOutput_, typename ElementAccumulator_,
typename ElementCompute_, typename ElementC_, int ElementsPerAccess,
template <typename T> class ActivationOp_,
template <typename T> class BinaryOp_,
template <typename T> class UnaryOp_>
class LinearCombinationResidualBlock {
public:
using ElementOutput = ElementC_;
using ElementC = ElementC_;
using ElementAccumulator = ElementAccumulator_;
using ElementCompute = ElementCompute_;
static int const kElementsPerAccess = ElementsPerAccess;
static int const kCount = kElementsPerAccess;
using UnaryOp = UnaryOp_<Array<ElementCompute, kCount>>;
using BinaryOp = BinaryOp_<Array<ElementCompute, kCount>>;
using ActivationOp = ActivationOp_<Array<ElementCompute, kCount>>;
using FragmentAccumulator = Array<ElementAccumulator, kElementsPerAccess>;
using FragmentCompute = Array<ElementCompute, kElementsPerAccess>;
using FragmentC = Array<ElementC, kElementsPerAccess>;
using FragmentOutput = Array<ElementOutput, kElementsPerAccess>;
using ElementZ = ElementOutput_;
using ElementT = ElementZ;
using FragmentZ = Array<ElementZ, kElementsPerAccess>;
using FragmentT = Array<ElementT, kElementsPerAccess>;
static bool const kIsHeavy = true;
static bool const kStoreZ = true;
static bool const kStoreT = false;
/// Host-constructable parameters structure
struct Params {
ElementCompute alpha; ///< scales accumulators
ElementCompute beta; ///< scales residual input
ElementCompute const *alpha_ptr{nullptr}; ///< pointer to accumulator scalar - if not null, loads it from memory
ElementCompute const *beta_ptr{nullptr}; ///< pointer to residual scalar - if not null, loads it from memory
CUTLASS_HOST_DEVICE
Params() : alpha(ElementCompute(1)), beta(ElementCompute(1)) {}
CUTLASS_HOST_DEVICE
Params(ElementCompute alpha, ElementCompute beta)
: alpha(alpha), beta(beta) {}
CUTLASS_HOST_DEVICE
Params(ElementCompute const *alpha_ptr, ElementCompute const *beta_ptr)
: alpha(0), beta(0), alpha_ptr(alpha_ptr), beta_ptr(beta_ptr) {}
};
private:
ElementCompute alpha_;
ElementCompute beta_;
bool skip_elementwise_;
public:
/// Constructor from Params
CUTLASS_HOST_DEVICE
LinearCombinationResidualBlock(Params const &params) {
alpha_ = (params.alpha_ptr ? *params.alpha_ptr : params.alpha);
beta_ = (params.beta_ptr ? *params.beta_ptr : params.beta);
skip_elementwise_ = false;
}
/// The "source" tensor corresponds to the residual input
CUTLASS_HOST_DEVICE
bool is_source_needed() const { return true; }
/// Functionally required for serial reduction in the epilogue
/// IMPORTANT: Split-k is supported only when ActivationOp is Identity.
CUTLASS_HOST_DEVICE
void set_k_partition(int k_partition, int k_partition_count) {
if (k_partition) {
beta_ = ElementCompute(1);
}
if (k_partition != k_partition_count - 1) {
skip_elementwise_ = true;
}
}
/// Applies the operation UnaryOp(BinaryOp(ActivationOp(AB + bias), residual))
CUTLASS_HOST_DEVICE
void operator()(FragmentOutput &frag_Z, FragmentOutput &, FragmentAccumulator const &AB,
FragmentC const &residual,
FragmentCompute const &bias) const {
UnaryOp unary_op;
BinaryOp binary_op;
ActivationOp activation;
FragmentCompute tmp_Accum =
NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
FragmentCompute tmp_residual =
NumericArrayConverter<ElementCompute, ElementC, kElementsPerAccess>()(residual);
FragmentCompute z =
binary_op(activation(alpha_ * tmp_Accum + bias), beta_ * tmp_residual);
FragmentCompute result_Z = skip_elementwise_ ? z : unary_op(z);
NumericArrayConverter<ElementOutput, ElementCompute, kElementsPerAccess> convert_z;
frag_Z = convert_z(result_Z);
}
/// Should never be called
CUTLASS_HOST_DEVICE
void operator()(FragmentOutput &, FragmentOutput &, FragmentAccumulator const &,
FragmentCompute const &) const {}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace epilogue
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -28,9 +28,10 @@
#include "../../common/cutlass_unit_test.h"
#include "cutlass/cutlass.h"
#include "cutlass/array.h"
#include "cutlass/epilogue/thread/linear_combination_bias_elementwise.h"
#include "cutlass/epilogue/thread/linear_combination_bias_relu.h"
#include "cutlass/epilogue/thread/linear_combination_residual_block.h"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/conv/kernel/default_conv2d_fprop_with_broadcast.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
@ -83,6 +84,87 @@ TEST(SM75_Device_Conv2d_Fprop_With_Broadcast_Analytic_ImplicitGemm_f16nhwc_f16nh
EXPECT_TRUE(test::conv::device::TestAllConv2dWithBroadcast<Conv2dFprop>());
}
// Test residual block fusion: UnaryOp(BinaryOp(ActivationOp(Conv2d(X) + bias), residual))
// LinearCombinationResidualBlock does not support the split-k mode unless ActivationOp is Identity.
// This is because the activation needs to be applied to the fully accumulated output of the Conv2d op,
// which only the last thread block would have an access to, before applying BinaryOp.
// The epilogue functor in the last thread block would have to be given three inputs, namely
// partial outputs, bias, and residual, but this is not supported in the current interface.
// Set TestSplitK = false to skip split-k tests with non-trivial ActivationOp.
template <
typename ElementAccumulator,
template<typename T> class ActivationOp,
template<typename T> class BinaryOp,
template<typename T> class UnaryOp,
bool TestSplitK = true
>
void TestResidaulBlock() {
using ElementA = cutlass::half_t;
using ElementB = cutlass::half_t;
using ElementC = cutlass::half_t;
using ElementD = ElementC;
using ElementCompute = ElementAccumulator;
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationResidualBlock<
ElementD,
ElementAccumulator,
ElementCompute,
ElementC,
8,
ActivationOp,
BinaryOp,
UnaryOp
>;
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFpropWithBroadcast<
ElementA, cutlass::layout::TensorNHWC,
ElementB, cutlass::layout::TensorNHWC,
ElementC, cutlass::layout::TensorNHWC,
ElementAccumulator,
cutlass::arch::OpClassTensorOp,
cutlass::arch::Sm75,
cutlass::gemm::GemmShape<128, 128, 32>,
cutlass::gemm::GemmShape<64, 64, 32>,
cutlass::gemm::GemmShape<16, 8, 8>,
EpilogueOutputOp,
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
2,
cutlass::arch::OpMultiplyAdd,
cutlass::conv::IteratorAlgorithm::kAnalytic
>::Kernel;
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
struct ReferenceOp {
using OutputOp = typename Conv2dFprop::EpilogueOutputOp;
using ElementZ = typename OutputOp::ElementZ;
ActivationOp<ElementCompute> activation;
BinaryOp<ElementCompute> binary_op;
UnaryOp<ElementCompute> unary_op;
void operator()(ElementZ &Z, ElementZ&, ElementCompute conv2d, ElementCompute residual) {
Z = ElementZ(unary_op(binary_op(activation(conv2d), residual)));
}
};
bool passed = test::conv::device::TestAllConv2dWithBroadcast<Conv2dFprop, ReferenceOp, true, TestSplitK>();
EXPECT_TRUE(passed);
}
TEST(SM75_Device_Conv2d_Fprop_With_Residual_Block_Plus_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
128x128_32x2_64x64x32) {
// Resnet
TestResidaulBlock<cutlass::half_t, cutlass::epilogue::thread::Identity, cutlass::plus, cutlass::epilogue::thread::ReLu>();
}
TEST(SM75_Device_Conv2d_Fprop_With_Residual_Block_Multiply_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
128x128_32x2_64x64x32) {
// EfficientNet V2
// Do not run split-K tests since the activation op is not Identity.
TestResidaulBlock<float, cutlass::epilogue::thread::Sigmoid, cutlass::multiplies, cutlass::epilogue::thread::Identity, false>();
}
////////////////////////////////////////////////////////////////////////////////
#endif // CUTLASS_ARCH_MMA_SM75_SUPPORTED

View File

@ -95,7 +95,8 @@ struct Conv2dWithBroadcastReferenceOp {
template <
typename Conv2d,
typename ReferenceOp = Conv2dWithBroadcastReferenceOp<Conv2d>
typename ReferenceOp,
bool AddBroadcastFirst = false
>
class TestbedConv2dWithBroadcast {
public:
@ -113,7 +114,8 @@ public:
using ElementT = typename EpilogueOutputOp::ElementT;
static cutlass::conv::Operator const kConvolutionalOperator = Conv2d::kConvolutionalOperator;
static const bool kAddBroadcastFirst = AddBroadcastFirst;
static const bool kStoreT = EpilogueOutputOp::kStoreT;
public:
/// Initialization
@ -270,7 +272,7 @@ public:
cutlass::conv::Conv2dProblemSize const &problem_size,
cutlass::conv::SplitKMode const &split_k_mode = cutlass::conv::SplitKMode::kSerial,
ElementCompute alpha = ElementCompute(1),
ElementCompute beta = ElementCompute(0)) {
ElementCompute beta = ElementCompute(1)) {
// Waive test if insufficient CUDA device
if (!sufficient()) {
@ -300,7 +302,7 @@ public:
{alpha, beta},
split_k_mode,
tensor_Broadcast.device_data(),
tensor_T_computed.device_data(),
kStoreT ? tensor_T_computed.device_data() : nullptr,
0, // This must be zero
implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size).c()
);
@ -338,7 +340,8 @@ public:
//
// Reference check
//
// When kAddBroadcastFirst is true, add bias on the host
ElementCompute beta_ref = kAddBroadcastFirst ? ElementCompute(0) : beta;
#if CUTLASS_CONV_TEST_UNIT_REFERENCE_DEVICE_ENABLED
cutlass::reference::device::Conv2d<
@ -358,7 +361,7 @@ public:
tensor_C_reference.device_ref(),
tensor_Y_reference.device_ref(),
alpha,
beta);
beta_ref);
// sync host (copy device data to host) for dumping error output in case of mismatches
tensor_Y_reference.sync_host();
@ -382,7 +385,7 @@ public:
tensor_C_reference.host_ref(),
tensor_Y_reference.host_ref(),
alpha,
beta);
beta_ref);
#endif
ReferenceOp reference_op;
@ -395,8 +398,15 @@ public:
ElementZ z;
ElementT t;
ElementCompute accum = tensor_Y_reference.at({n, p, q, k});
ElementCompute bias = ElementCompute(tensor_Broadcast.at({0, 0, 0, k}));
reference_op(z, t, tensor_Y_reference.at({n, p, q, k}), tensor_Broadcast.at({0, 0, 0, k}));
if (kAddBroadcastFirst) {
reference_op(z, t, accum + bias,
beta * ElementCompute(tensor_C_reference.at({n, p, q, k})));
} else {
reference_op(z, t, accum, bias);
}
tensor_Z_reference.at({n, p, q, k}) = z;
tensor_T_reference.at({n, p, q, k}) = t;
@ -405,11 +415,11 @@ public:
}
}
passed = cutlass::reference::host::TensorEquals(
tensor_T_computed.host_view(),
tensor_T_reference.host_view());
EXPECT_TRUE(passed);
if (kStoreT) {
passed = cutlass::reference::host::TensorEquals(
tensor_T_computed.host_view(), tensor_T_reference.host_view());
EXPECT_TRUE(passed);
}
passed = cutlass::reference::host::TensorEquals(
tensor_Z_computed.host_view(),
@ -479,10 +489,13 @@ public:
// Additionaly, each conv2d test can provide conv problem sizes (conv_test_sizes) and blacklist of sizes
// (conv_blacklist_sizes)
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename ImplicitGemm>
template <typename ImplicitGemm,
typename ReferenceOp = Conv2dWithBroadcastReferenceOp<ImplicitGemm>,
bool AddBroadcastFirst = false,
bool TestSplitK = true>
bool TestAllConv2dWithBroadcast(
const Conv2dProblemVector & conv_test_sizes = Conv2dProblemVector(),
const Conv2dProblemVector & conv_blacklist_sizes = Conv2dProblemVector()) {
const Conv2dProblemVector &conv_test_sizes = Conv2dProblemVector(),
const Conv2dProblemVector &conv_blacklist_sizes = Conv2dProblemVector()) {
bool passed = true;
@ -490,7 +503,7 @@ bool TestAllConv2dWithBroadcast(
// Testbed object
//
TestbedConv2dWithBroadcast<ImplicitGemm> testbed;
TestbedConv2dWithBroadcast<ImplicitGemm, ReferenceOp, AddBroadcastFirst> testbed;
//
// Get conv problem sizes to run conv operator
@ -597,6 +610,9 @@ bool TestAllConv2dWithBroadcast(
return passed;
}
if (!TestSplitK)
return passed;
// Sweep split-k-slice using serial and prallel reduction with non-unity alpha and non-zero beta for
// a single conv2d problem size. Convolution unit tests take a long time to run so only sweep parameters
// which are abolutely neccessary to catch functional bugs. The below code does provide option to sweep