Merge pull request #228 from mani-ananth/master
Fix for issue#224 and issue#225
This commit is contained in:
commit
c805593ebe
@ -111,7 +111,8 @@ using Gemm = cutlass::gemm::device::SparseGemm<ElementInputA,
|
||||
|
||||
// Data type and layout of meta data matrix E can be inferred from template Gemm.
|
||||
using ElementInputE = typename Gemm::ElementE;
|
||||
using LayoutInputE = typename Gemm::LayoutE;
|
||||
using LayoutInputE = cutlass::layout::RowMajor;
|
||||
using ReorderedLayoutInputE = typename Gemm::LayoutE;
|
||||
|
||||
// Blow property is defined in include/cutlass/arch/sp_mma_sm80.h
|
||||
// 50% Sparsity on Ampere
|
||||
@ -151,27 +152,27 @@ int run() {
|
||||
cutlass::HostTensor<ElementInputE, LayoutInputE> tensor_e(
|
||||
cutlass::make_Coord(problem_size.m(), problem_size.k() / kSparse / kElementsPerElementE));
|
||||
// Same size as the above. The above one needs to be reordered and stored in this one.
|
||||
cutlass::HostTensor<ElementInputE, LayoutInputE> tensor_e_reordered(
|
||||
cutlass::HostTensor<ElementInputE, ReorderedLayoutInputE> tensor_e_reordered(
|
||||
cutlass::make_Coord(problem_size.m(), problem_size.k() / kSparse / kElementsPerElementE));
|
||||
|
||||
// Fill input and output matrices on host using CUTLASS helper functions
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_a.host_view(),
|
||||
1,
|
||||
ElementInputA(1),
|
||||
ElementInputA(-1),
|
||||
ElementInputA(2),
|
||||
ElementInputA(-2),
|
||||
0); // <- Fill matrix A on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_b.host_view(),
|
||||
1,
|
||||
ElementInputB(1),
|
||||
ElementInputB(-1),
|
||||
ElementInputB(2),
|
||||
ElementInputB(-2),
|
||||
0); // <- Fill matrix B on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomUniform(
|
||||
tensor_c.host_view(),
|
||||
1,
|
||||
ElementOutput(1),
|
||||
ElementOutput(-1),
|
||||
ElementOutput(2),
|
||||
ElementOutput(-2),
|
||||
0); // <- Fill matrix C on host with uniform-distribution random data
|
||||
cutlass::reference::host::TensorFillRandomSparseMeta(
|
||||
tensor_e.host_view(),
|
||||
@ -210,7 +211,7 @@ int run() {
|
||||
tensor_b.device_ref(), // <- reference to matrix B on device
|
||||
tensor_c.device_ref(), // <- reference to matrix C on device
|
||||
tensor_d.device_ref(), // <- reference to matrix D on device
|
||||
tensor_e.device_ref(), // <- reference to matrix E on device
|
||||
tensor_e_reordered.device_ref(), // <- reference to matrix E on device
|
||||
{alpha, beta}, // <- tuple of alpha and beta
|
||||
split_k_slices}; // <- k-dimension split factor
|
||||
|
||||
|
@ -284,6 +284,115 @@ struct DefaultConv3dFprop <
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Defines a kernel for Conv3dFprop specialization for Optimized Iterator Algorithm
|
||||
/// and 2 stage pipeline.
|
||||
template <
|
||||
typename ElementA,
|
||||
typename LayoutA,
|
||||
typename ElementB,
|
||||
typename LayoutB,
|
||||
typename ElementC,
|
||||
typename LayoutC,
|
||||
typename ElementAccumulator,
|
||||
typename ArchTag,
|
||||
typename ThreadblockShape,
|
||||
typename WarpShape,
|
||||
typename InstructionShape,
|
||||
typename EpilogueOutputOp,
|
||||
typename ThreadblockSwizzle,
|
||||
typename MathOperatorTag
|
||||
>
|
||||
struct DefaultConv3dFprop <
|
||||
ElementA,
|
||||
LayoutA,
|
||||
ElementB,
|
||||
LayoutB,
|
||||
ElementC,
|
||||
LayoutC,
|
||||
ElementAccumulator,
|
||||
arch::OpClassTensorOp,
|
||||
ArchTag,
|
||||
ThreadblockShape,
|
||||
WarpShape,
|
||||
InstructionShape,
|
||||
EpilogueOutputOp,
|
||||
ThreadblockSwizzle,
|
||||
2,
|
||||
MathOperatorTag,
|
||||
IteratorAlgorithm::kOptimized
|
||||
> {
|
||||
|
||||
// Define the core components from GEMM
|
||||
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
|
||||
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
|
||||
ElementB, layout::ColumnMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
|
||||
2, MathOperatorTag>;
|
||||
|
||||
// Define iterators over tiles from the A operand
|
||||
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
|
||||
using IteratorA =
|
||||
cutlass::conv::threadblock::TileIterator<
|
||||
cutlass::conv::threadblock::Conv3dFpropActivationTileAccessIteratorOptimized<
|
||||
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
|
||||
ElementA,
|
||||
LayoutA,
|
||||
ThreadMapA
|
||||
>
|
||||
>;
|
||||
|
||||
using SmemIteratorA = typename MmaCore::SmemIteratorA;
|
||||
|
||||
// Define iterators over tiles from the B operand
|
||||
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
|
||||
using IteratorB =
|
||||
cutlass::conv::threadblock::TileIterator<
|
||||
cutlass::conv::threadblock::Conv3dFpropFilterTileAccessIteratorOptimized<
|
||||
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
|
||||
ElementB,
|
||||
LayoutB,
|
||||
ThreadMapB
|
||||
>
|
||||
>;
|
||||
|
||||
using SmemIteratorB = typename MmaCore::SmemIteratorB;
|
||||
|
||||
// Warp-level GEMM components
|
||||
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
|
||||
using MmaPolicy = typename MmaCore::MmaPolicy;
|
||||
|
||||
// Define the Mma
|
||||
using Mma = threadblock::ImplicitGemmPipelined<
|
||||
ThreadblockShape,
|
||||
IteratorA,
|
||||
SmemIteratorA,
|
||||
IteratorB,
|
||||
SmemIteratorB,
|
||||
ElementC,
|
||||
LayoutC,
|
||||
MmaPolicy
|
||||
>;
|
||||
|
||||
// Define the epilogue
|
||||
using Epilogue = typename detail::DefaultConvEpilogue<
|
||||
ArchTag,
|
||||
ThreadblockShape,
|
||||
WarpMmaTensorOp,
|
||||
1,
|
||||
EpilogueOutputOp
|
||||
>::Epilogue;
|
||||
|
||||
// Define the kernel
|
||||
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
|
||||
Mma,
|
||||
Epilogue,
|
||||
ThreadblockSwizzle,
|
||||
conv::Operator::kFprop,
|
||||
Conv3dProblemSize
|
||||
>;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Defines a kernel for Conv3dFprop specialzation for Optimized IteratorAlgorithm and multistage
|
||||
// pipeline.
|
||||
template <
|
||||
|
Loading…
Reference in New Issue
Block a user