* Release 3.3.0
Adds support for mixed precision GEMMs On Hopper and Ampere
Adds support for < 16B aligned GEMMs on Hopper
Enhancements to EVT
Enhancements to Python interface
Enhancements to Sub-byte type handling in CuTe
Several other bug-fixes and performance improvements.
* minor doc update
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
CUTLASS 2.0
Substantially refactored for
- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code
Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler
Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands
Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs
Note: this commit and all that follow require a host compiler supporting C++11 or greater.