Commit Graph

177 Commits

Author SHA1 Message Date
mengchi.hmc
f4b0a33633 add unit test for non int4 load 2021-04-23 14:33:46 +08:00
mengchi.hmc
bb35a3ba6f support setting load granularity for conv2d fprop 2021-04-22 15:20:57 +08:00
mengchi.hmc
7ec3a87f22 support unalignment input for conv2d fprop stage=2 Fix for issue #242 2021-04-21 14:40:05 +08:00
KeDengMS
0b74c8f473 Address CR 2021-04-19 23:36:06 +00:00
KeDengMS
83036ed646 More clean up 2021-04-18 04:29:20 +00:00
KeDengMS
41a31b404b Fixes to Gelu for half and fusion 2021-04-17 22:10:19 +00:00
Peter Han
7320aee17d Typo fix issue#236
Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2021-04-15 15:08:35 +08:00
Peter Han
2142a05d9d tranpose.h update based on issue#233
1. Add 'pragma once' preprocess directive
 2. Replace prmt PTX with __byte_perm intrinsic

Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2021-04-14 19:58:00 +08:00
Manikandan Ananth
08993707da fixing functional bug in fused epilogue 2021-04-09 11:36:03 -07:00
Manikandan Ananth
4839b6cb61 add 2stage fprop 3d into default file 2021-04-07 13:29:32 -07:00
Haicheng Wu
d97214987a
Merge pull request #220 from Peter9606/wrong-stride-array-definition
Bugfix: typo, make reduction device cases passed
2021-04-02 08:43:52 -04:00
Peter Han
7074047a54 Bugfix: typo, make reduction device cases passed
Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2021-04-02 09:35:23 +08:00
Manikandan Ananth
75a4737cfe Fix for public issue #211
- Add a slice-K tile size to the profiler
- fix num warps calculations in implicit gemm header
2021-04-01 14:42:00 -07:00
Peter Han
6a6b4028bd Revert wrong fix of params.update in GemmUniversalBase
Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2021-03-23 23:20:40 +08:00
Peter Han
92393b2676 Bugfix: memsetAsync uses wrong default stream
Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2021-03-23 21:11:42 +08:00
Peter Han
169181f30f Make Shape public from Mma_HFMA2.
Signed-off-by: Peter Han <fujun.han@iluvatar.ai>
2021-03-04 11:05:16 +08:00
Andrew Kerr
746b7b3247 Enabled tensor reduction kernels. 2021-02-26 15:32:19 -05:00
Andrew Kerr
0e13748649 CUTLASS 2.5 2021-02-26 09:58:26 -05:00
Manish Gupta
6615010cd0
CUTLASS 2.4 (Implicit GEMM convolution) (#147)
CUTLASS 2.4 (Implicit GEMM Convolution)

Co-authored-by: Manish Gupta <manigupta@nvidia.com>, Haicheng Wu <haichengw@nvidia.com>, Dustyn Blasig <dblasig@nvidia.com>, Andrew Kerr <akerr@nvidia.com>
2020-11-19 21:25:25 -08:00
akerr
37a8f9e598 CUTLASS 2.3.0 final. 2020-09-25 10:34:46 -07:00
Andrew Kerr
c53f3339bb
CUTLASS 2.3 initial commit (#134)
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
2020-09-23 14:00:58 -07:00
hwu36
4dac7490e6
Typoes (#107)
* Update splitk_gemm.cu

* Update gemm_bias_relu.cu

* Update mma_sm75.h
2020-07-13 14:25:52 -07:00
Andrew Kerr
1ab1027954
Updated mma_sm80.h to avoid perf penalty due to reinterpret_cast<>. (#100)
- Updated mma_sm80.h to avoid perf penalty due to reinterpret_cast<>.
- Enhancement to CUTLASS Utility Library's HostTensorPlanarComplex template to support copy-in and copy-out
- Added test_examples target to build and test all CUTLASS examples
- Minor edits to documentation to point to GTC 2020 webinar
2020-06-15 10:47:01 -07:00
Andrew Kerr
86931fef85
CUTLASS 2.2 (#96)
Adds support for NVIDIA Ampere Architecture features. CUDA 11 Toolkit recommended.
2020-06-08 16:17:35 -07:00
Andrew Kerr
96dab34ad9
CUTLASS 2.1 (#83)
CUTLASS 2.1 contributes:
- BLAS-style host-side API added to CUTLASS Library
- Planar Complex GEMM kernels targeting Volta and Turing Tensor Cores
- Minor enhancements and bug fixes
2020-04-07 13:51:25 -07:00
Andrew Kerr
45ecbc885b
Removed redundant conjugation operations from matrix_traits. (#65) 2019-11-20 11:27:13 -08:00
Andrew Kerr
fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00