* Passing warp-level mixed input F16*(S8/U8) tests
* passing device-level mixed input F16*(S8/U8) tests
* add to profiler - I8 (111 TFLOPs), U (123 TFLOPs)
* fast numeric conversions (I8 = 132 TFLOPs, U8 = 148 TFLOPs)
* Speedup reference compilation (REVERT THIS COMMIT)
* wider_add.u32_packed_sub.f16x2 (I8 = 132TFLOP/s, U8 = 170 TFLOP/s)
* Improve s8->f16 cvt and support bf16*u8 @158 TFLOPs
* BF16 * S8 (142 TFLOPs)
* Handle mixed-input upcast on OperandA (Support [S8|U8]*[F16|BF16]
* rename OpMultiplyAddMixedInput to OpMultiplyAddMixedInputUpcast
* Add device-level test and profiler support for upcast on operand A
* Move shfl before the cvt and reduce #shfls by 1/2
* fix smem_usage calculation for mixed_input types
* uncomment the stuff (getting ready for merge)
* profiler changes and mixed-input reference
* mixed input reference are in a new file
* use platform instead of std
* comments and typo only
* Use CreateGemmOperator and delete CreateMixedInputGemmOperator
* copyright for new files
* rebase follow-up
* Split apart gemm reference templates into multiple TUs for parallel compilation
* remove old files
* better balancing of ref kernels across TUs
* remove 3 new added refcheck kernels and some un-necessary fp8 library instances to reduce lib size
* remove auto fp8 kernels
* remove some redundant kernels
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
CUTLASS 2.1 contributes:
- BLAS-style host-side API added to CUTLASS Library
- Planar Complex GEMM kernels targeting Volta and Turing Tensor Cores
- Minor enhancements and bug fixes
CUTLASS 2.0
Substantially refactored for
- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code
Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler
Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands
Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs
Note: this commit and all that follow require a host compiler supporting C++11 or greater.