Commit Graph

24 Commits

Author SHA1 Message Date
Vijay Thakkar
7d49e6c7e2
Updates for CUTLASS 3.5.0 (#1468) 2024-04-11 21:33:40 -04:00
Vijay Thakkar
629f4653c3
CUTLASS 3.5.0 (#1411) 2024-03-19 17:51:04 -04:00
ANIKET SHIVAM
751eb9a885
Update license year (#1306) 2024-01-16 14:37:22 -05:00
Pradeep Ramani
8236f30675
CUTLASS 3.4.0 (#1286)
* CUTLASS 3.4.0

* Update CHANGELOG.md

---------

Co-authored-by: Pradeep Ramani <prramani@nvidia.com>
2023-12-29 15:21:31 -05:00
ANIKET SHIVAM
90d3b0fb18
CUTLASS 3.2.1 (#1113)
* Updates for 3.2.1 release.

* Minor fix in gemm op profiler for raster order.

* Add scheduler mapping for raster order in the kernels.
2023-09-26 17:24:26 -04:00
ANIKET SHIVAM
4575443d44
CUTLASS 3.2 (#1024)
* CUTLASS 3.2
2023-08-07 20:50:32 -04:00
ANIKET SHIVAM
d572cc1aab
CUTLASS 3.1 (#915)
Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-04-14 23:19:34 -04:00
Feng Shijie
bc36122c3f
[layout] Fix AffineRank2ColumnMajor::packed() (#879)
* [layout] Fix AffineRank2ColumnMajor::packed()

* correct affine2row::packed

---------

Co-authored-by: Haicheng Wu <haichengw@nvidia.com>
2023-03-29 11:59:48 -04:00
Vijay Thakkar
277bd6e537
CUTLASS 3.0.0 (#786)
* CUTLASS 3.0.0
2023-01-23 20:55:28 -05:00
ANIKET SHIVAM
66d9cddc83
New updates for 2.11 (#775)
* New updates.

* Minor profiler updates

Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-01-20 16:32:57 -05:00
Aditya Atluri
c975e2ccbb
releaase 2.11 (#703) 2022-11-19 09:02:15 -05:00
Wenzhuo Liu
cd37e82492
change unused class member to local var (#646) 2022-09-28 23:52:35 -04:00
Wenzhuo Liu
7a458f00a6
fix(permute.h): incorrect comment in Tensor5DPermute20314 (#637)
* fix(permute.h): incorrect comment in `Tensor5DPermute20314`

* typo in usage in example 39
2022-09-22 09:21:13 -04:00
ANIKET SHIVAM
b72cbf957d
CUTLASS 2.10 (#615)
Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2022-09-03 18:48:46 -04:00
Andrew Kerr
12f4108ac2
CUTLASS 2.9 (#468) 2022-04-23 15:02:38 -04:00
Feng Shijie
cd39c75e25
Fix typo in docs, code comments (#429)
* [docs] fix typo in media/docs/layout.md

* [docs] fix comment error

* fix typo in include/cutlass/arch/simd_61.h

* fix stride comment errors in TensorLayout
2022-03-15 21:54:36 -04:00
Manish Gupta
1ac4559d12
Cutlass 2.6 Update 1 (#301)
* cutlass 2.6 update

* remove debug prints
2021-07-27 17:58:30 -07:00
Manish Gupta
e5d51840e8
CUTLASS 2.6 (#298)
CUTLASS 2.6
2021-07-23 00:40:53 -04:00
Andrew Kerr
0e13748649 CUTLASS 2.5 2021-02-26 09:58:26 -05:00
Manish Gupta
6615010cd0
CUTLASS 2.4 (Implicit GEMM convolution) (#147)
CUTLASS 2.4 (Implicit GEMM Convolution)

Co-authored-by: Manish Gupta <manigupta@nvidia.com>, Haicheng Wu <haichengw@nvidia.com>, Dustyn Blasig <dblasig@nvidia.com>, Andrew Kerr <akerr@nvidia.com>
2020-11-19 21:25:25 -08:00
Andrew Kerr
c53f3339bb
CUTLASS 2.3 initial commit (#134)
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
2020-09-23 14:00:58 -07:00
Andrew Kerr
86931fef85
CUTLASS 2.2 (#96)
Adds support for NVIDIA Ampere Architecture features. CUDA 11 Toolkit recommended.
2020-06-08 16:17:35 -07:00
Andrew Kerr
96dab34ad9
CUTLASS 2.1 (#83)
CUTLASS 2.1 contributes:
- BLAS-style host-side API added to CUTLASS Library
- Planar Complex GEMM kernels targeting Volta and Turing Tensor Cores
- Minor enhancements and bug fixes
2020-04-07 13:51:25 -07:00
Andrew Kerr
fb335f6a5f
CUTLASS 2.0 (#62)
CUTLASS 2.0

Substantially refactored for

- Better performance, particularly for native Turing Tensor Cores
- Robust and durable templates spanning the design space
- Encapsulated functionality embodying modern C++11 programming techniques
- Optimized containers and data types for efficient, generic, portable device code

Updates to:
- Quick start guide
- Documentation
- Utilities
- CUTLASS Profiler

Native Turing Tensor Cores
- Efficient GEMM kernels targeting Turing Tensor Cores
- Mixed-precision floating point, 8-bit integer, 4-bit integer, and binarized operands

Coverage of existing CUTLASS functionality:
- GEMM kernels targeting CUDA and Tensor Cores in NVIDIA GPUs
- Volta Tensor Cores through native mma.sync and through WMMA API
- Optimizations such as parallel reductions, threadblock rasterization, and intra-threadblock reductions
- Batched GEMM operations
- Complex-valued GEMMs

Note: this commit and all that follow require a host compiler supporting C++11 or greater.
2019-11-19 16:55:34 -08:00