/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Default kernel-level GEMM definitions combine threadblock-scoped matrix multiply-add with the appropriate threadblock-scoped epilogue. Note, CUTLASS epilogues universally target row-major outputs. Column-major outputs are accommodated by exchanging A and B operands and assuming transposed layouts. Partial specializations here choose 'device::GemmTransposed' to implement this functionality. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/complex.h" #include "cutlass/layout/matrix.h" #include "cutlass/numeric_types.h" #include "fmha_grouped.h" #include "gemm_kernel_utils.h" #include "gemm/custom_mma.h" #include "gemm/find_default_mma.h" #include "gemm/mma_from_smem.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// template < // The datatype of Q/K/V typename scalar_t_, // Architecture we are targeting (eg `cutlass::arch::Sm80`) typename ArchTag_, // If Q/K/V are correctly aligned in memory and we can run a fast kernel bool isAligned_, int kQueriesPerBlock, int kKeysPerBlock, int kMaxK = (int)cutlass::platform::numeric_limits::max(), GroupScheduleMode GroupScheduleMode_ = GroupScheduleMode::kDeviceOnly > struct DefaultFMHAGrouped { using scalar_t = scalar_t_; using accum_t = float; using output_t = scalar_t; // Accumulator between 2 iterations // Using `accum_t` improves perf on f16 at the cost of // numerical errors using output_accum_t = accum_t; using ArchTag = ArchTag_; static bool const kIsAligned = isAligned_; static bool const kSingleValueIteration = kMaxK <= kKeysPerBlock; static constexpr bool kIsHalf = cutlass::sizeof_bits::value == 16; static int const kWarpSize = 32; static int const kNumWarpsPerBlock = kQueriesPerBlock * kKeysPerBlock / (kWarpSize * kWarpSize); struct MM0 { /* In this first matmul, we compute a block of `Q @ K.T`. While the calculation result is still hot in registers, we update `mi`, `m_prime`, `s_prime` in shared-memory, and then store this value into a shared-memory ("AccumulatorSharedStorage") that is used later as operand A for the second matmul (see MM1) */ using GemmType = gemm_kernel_utils::DefaultGemmType; using OpClass = typename GemmType::OpClass; using ElementA = scalar_t; using ElementB = scalar_t; using ElementC = scalar_t; using ElementAccumulator = accum_t; using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::RowMajor; using DefaultConfig = typename cutlass::gemm::device::DefaultGemmConfiguration< OpClass, ArchTag, ElementA, ElementB, ElementC, ElementAccumulator >; static int const kAlignmentA = kIsAligned ? DefaultConfig::kAlignmentA : GemmType::kMinimumAlignment; static int const kAlignmentB = kIsAligned ? DefaultConfig::kAlignmentB : GemmType::kMinimumAlignment; using ThreadblockShape = cutlass::gemm::GemmShape; using WarpShape = cutlass::gemm::GemmShape<32, 32, GemmType::WarpK>; using InstructionShape = typename GemmType::InstructionShape; static int const kStages = DefaultConfig::kStages; using Operator = typename GemmType::Operator; using DefaultMma = typename cutlass::gemm::threadblock::FindDefaultMma< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, LayoutC, OpClass, ArchTag, ThreadblockShape, WarpShape, InstructionShape, ArchTag::kMinComputeCapability >= 80 && kIsHalf ? 4 : DefaultConfig::kStages, Operator >::DefaultMma; using MmaCore = typename DefaultMma::MmaCore; using IteratorA = typename DefaultMma::IteratorA; using IteratorB = typename DefaultMma::IteratorB; using DefaultThreadblockMma = typename DefaultMma::ThreadblockMma; using Mma = typename cutlass::platform::conditional< kSingleValueIteration, typename MakeCustomMma::Mma, DefaultThreadblockMma>::type; using AccumLambdaIterator = typename DefaultMmaAccumLambdaIterator< typename Mma::Operator::IteratorC, ElementAccumulator, kWarpSize>::Iterator; static_assert(MmaCore::WarpCount::kCount == kNumWarpsPerBlock, ""); // Epilogue to store to shared-memory in a format that we can use later for // the second matmul using B2bGemm = typename cutlass::gemm::threadblock::B2bGemm< typename Mma::Operator::IteratorC, typename Mma::Operator, scalar_t, WarpShape, ThreadblockShape>; using AccumulatorSharedStorage = typename B2bGemm::AccumulatorSharedStorage; }; struct MM1 { /* Second matmul: perform `attn @ V` where `attn` is the attention (not normalized) and stored in shared memory */ using GemmType = typename MM0::GemmType; using OpClass = typename GemmType::OpClass; using ElementA = scalar_t; using ElementB = scalar_t; using ElementC = output_accum_t; using ElementAccumulator = accum_t; using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using DefaultConfig = typename cutlass::gemm::device::DefaultGemmConfiguration< OpClass, ArchTag, ElementA, ElementB, ElementC, ElementAccumulator >; static int const kAlignmentA = DefaultConfig::kAlignmentA; static int const kAlignmentB = kIsAligned ? DefaultConfig::kAlignmentB : GemmType::kMinimumAlignment; using ThreadblockShape = typename MM0::ThreadblockShape; using WarpShape = typename MM0::WarpShape; using InstructionShape = typename MM0::InstructionShape; using EpilogueOutputOp = typename DefaultConfig::EpilogueOutputOp; static int const kStages = DefaultConfig::kStages; using Operator = typename GemmType::Operator; using ThreadblockSwizzle = void; // Swizzling is unused static bool const kSplitKSerial = false; using DefaultGemm = cutlass::gemm::kernel::DefaultGemm< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementC, LayoutC, ElementAccumulator, OpClass, ArchTag, ThreadblockShape, WarpShape, InstructionShape, EpilogueOutputOp, ThreadblockSwizzle, ArchTag::kMinComputeCapability >= 80 && kIsHalf ? 4 : DefaultConfig::kStages, kSplitKSerial, Operator>; using WarpIteratorA = typename cutlass::gemm::threadblock:: DefaultWarpIteratorAFromSharedMemory< typename DefaultGemm::Mma::Policy::Operator::Shape, // WarpShape typename DefaultGemm::Mma::Policy::Operator::InstructionShape, typename DefaultGemm::Mma::Policy::Operator::IteratorA, typename DefaultGemm::Mma::Policy>::WarpIterator; using DefaultMmaFromSmem = typename cutlass::gemm::threadblock::DefaultMmaFromSharedMemory< typename DefaultGemm::Mma, MM0::AccumulatorSharedStorage::Shape::kN, // kMaxK WarpIteratorA, false>; // kScaleOperandA using Mma = typename DefaultMmaFromSmem::Mma; using IteratorB = typename Mma::IteratorB; using WarpCount = typename Mma::WarpCount; static_assert(WarpCount::kCount == kNumWarpsPerBlock, ""); using DefaultEpilogue = typename DefaultGemm::Epilogue; using OutputTileIterator = typename cutlass::epilogue::threadblock::PredicatedTileIterator< typename DefaultEpilogue::OutputTileIterator::ThreadMap, output_t>; using OutputTileIteratorAccum = typename cutlass::epilogue::threadblock::PredicatedTileIterator< typename DefaultEpilogue::OutputTileIterator::ThreadMap, output_accum_t>; }; /// Define the kernel in terms of the default kernel using FMHAKernel = kernel::FMHAGrouped< MM0, MM1, scalar_t, accum_t, output_t, output_accum_t, kSingleValueIteration, GroupScheduleMode_ >; }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace gemm } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////