/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide Rank 2k update interface */ #pragma once #include #include #include #include "../../common/cutlass_unit_test.h" #include "cutlass/blas3.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/error_metrics.h" #include "cutlass/util/reference/host/rank_k_complex.h" #include "testbed_utils.h" namespace test { namespace gemm { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template struct TestbedRank2KUniversal { using ElementAccumulator = typename RankK::ElementAccumulator; using ElementCompute = typename RankK::RankKkernel::Epilogue::OutputOp::ElementCompute; /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_C; uint64_t seed; cutlass::HostTensor tensor_A; cutlass::HostTensor tensor_C; cutlass::HostTensor tensor_D; cutlass::HostTensor reference_D; // // Methods // TestbedRank2KUniversal( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): init_A(init_A_), init_C(init_C_), seed(seed_) { } /// Helper to initialize a tensor view template bool initialize_tensor( cutlass::TensorView view, cutlass::Distribution::Kind dist_kind, uint64_t seed, int mantissa_in_bits) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits::value; int bits_output = cutlass::sizeof_bits::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, mantissa_in_bits); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5, mantissa_in_bits); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else { EXPECT_TRUE(false) << "Input distribution not implemented"; return false; } return true; } /// Helper to initialize a tensor view template bool initialize_symmetric_tensor( cutlass::TensorView view, cutlass::Distribution::Kind dist_kind, uint64_t seed, int mantissa_in_bits) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits::value; int bits_output = cutlass::sizeof_bits::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillSymmetricRandomUniform( view, seed, RankK::kFillModeC, scope_max, scope_min, mantissa_in_bits); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillSymmetricRandomGaussian( view, seed, RankK::kFillModeC, 0, 0.5, mantissa_in_bits); } else { EXPECT_TRUE(false) << "Input distribution (symmetric tensor) not implemented"; return false; } return true; } /// Initializes data structures void initialize(cutlass::gemm::GemmCoord problem_size) { // // Allocate the RankK workspace // tensor_A.resize(problem_size.mk()); tensor_C.resize(problem_size.mn()); tensor_D.resize(problem_size.mn()); reference_D.resize(problem_size.mn(), false); EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019, cutlass::MantissaInBits::bits)); EXPECT_TRUE(initialize_symmetric_tensor(tensor_C.host_view(), init_C, seed + 2017, cutlass::MantissaInBits::bits)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = typename RankK::ElementA(1); tensor_C.host_view().at({0, 0}) = typename RankK::ElementC(1); cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view()); tensor_A.sync_device(); tensor_C.sync_device(); tensor_D.sync_device(); } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( cutlass::gemm::GemmCoord problem_size, ElementCompute alpha, ElementCompute beta) { tensor_D.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0); if (tensor_D.size() > 1) EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0); if (reference_D.size() > 1) EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0); double l2_norm = cutlass::reference::host::TensorRelativeErrorMetric(reference_D.host_view(), tensor_D.host_view()); bool passed = l2_norm < cutlass::MantissaInBits::error; return passed; } /// Verifies the result is a RankK bool verify( cutlass::gemm::GemmCoord problem_size, ElementCompute alpha, ElementCompute beta) { // // Verify // cutlass::reference::host::Rank2KComplex< typename RankK::ElementA, typename RankK::LayoutA, typename RankK::ElementC, typename RankK::LayoutC, ElementCompute, ElementAccumulator >( problem_size, alpha, tensor_A.host_ref(), RankK::kTransformA, beta, tensor_C.host_ref(), reference_D.host_ref(), ElementAccumulator(0), RankK::kFillModeC, RankK::kBlasMode ); return compare_reference(problem_size, alpha, beta); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { // // Determine SMEM requirements and waive if not satisfied // int smem_size = int(sizeof(typename RankK::RankKkernel::SharedStorage)); cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.sharedMemPerMultiprocessor < smem_size) { return false; } return true; } /// Executes one test bool run( cutlass::gemm::GemmUniversalMode mode, cutlass::gemm::GemmCoord problem_size, int batch_count = 1, ElementCompute alpha = ElementCompute(1), ElementCompute beta = ElementCompute(0)) { // Waive test if insufficient CUDA device if (!sufficient()) { if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) { std::cerr << "Test waived due to insufficient CUDA device." << std::endl; } return true; } #if 0 std::cout << "[TestbedRankKUniversal::run()] problem(m, n, k): " << problem_size << " alpha: " << ElementCompute(alpha) << " beta: " << ElementCompute(beta) << std::endl; #endif this->initialize(problem_size); // // Initialize the RankK operator // typename RankK::Arguments arguments{ mode, problem_size, batch_count, {alpha, beta}, tensor_A.device_data(), tensor_C.device_data(), tensor_D.device_data(), problem_size.n() * problem_size.k(), problem_size.m() * problem_size.n(), problem_size.m() * problem_size.n(), tensor_A.layout().stride(0), tensor_C.layout().stride(0), tensor_D.layout().stride(0) }; RankK rank2k_op; size_t workspace_size = RankK::get_workspace_size(arguments); cutlass::device_memory::allocation workspace(workspace_size); cutlass::Status status = rank2k_op.initialize(arguments, workspace.get()); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Run the RankK // status = rank2k_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = this->verify(problem_size, alpha, beta); //if (true) { if (!passed) { std::stringstream fname; fname << "error_RankK_device_" << "fill_mode_c_" << (RankK::kFillModeC == cutlass::FillMode::kLower ? "lower_" : (RankK::kFillModeC == cutlass::FillMode::kUpper ? "upper_" : "invalid_")) << "mnk_" << problem_size.m() << "x" << problem_size.n() << "x" << problem_size.k() << "_" << RankK::ThreadblockShape::kM << "x" << RankK::ThreadblockShape::kN << "x" << RankK::ThreadblockShape::kK << "_" << RankK::WarpShape::kM << "x" << RankK::WarpShape::kN << "x" << RankK::WarpShape::kK << ".txt"; std::cout << fname.str() << std::endl; std::ofstream results(fname.str()); results << problem_size << std::endl; results << "\nA:\n" << tensor_A.host_view() << "\n" << "\nC:\n" << tensor_C.host_view() << "\n" << "\nD reference:\n" << reference_D.host_view() << "\n" << "\nD computed:\n" << tensor_D.host_view() << "\n"; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template bool TestRank2kUniversal( cutlass::gemm::GemmCoord const & problem_size, cutlass::gemm::GemmUniversalMode mode, int batch_count, double alpha = 1.0, double beta = 2.0) { bool passed = true; TestbedRank2KUniversal testbed; using ElementCompute = typename RankK::EpilogueOutputOp::ElementCompute; passed = testbed.run( mode, problem_size, batch_count, cutlass::from_real(alpha), cutlass::from_real(beta) ); return passed; } template bool TestAllRankKUniversal() { bool passed = true; int const kMinimumOperandElementSize = int(cutlass::sizeof_bits::value); int const kAlignmentN = 128 / kMinimumOperandElementSize; int const kAlignmentK = 128 / kMinimumOperandElementSize; cutlass::gemm::GemmUniversalMode modes[] = { cutlass::gemm::GemmUniversalMode::kGemm, }; int problem_size_n[] = { kAlignmentN, 512 - 2*kAlignmentN }; int problem_size_k[] = { kAlignmentK, RankK::ThreadblockShape::kK * RankK::kStages - kAlignmentK, RankK::ThreadblockShape::kK * RankK::kStages * 3 - kAlignmentK }; int batch_counts[] = { // may be interpretted as batch count or split-K slices 1 // Just running one batch for now (removing 2, 3, 5, 7) }; double problem_alpha[] = { 1.0 }; double problem_beta[] = { 2.0 }; using ElementCompute = typename RankK::EpilogueOutputOp::ElementCompute; for (cutlass::gemm::GemmUniversalMode mode : modes) { for (int n : problem_size_n) { for (int k : problem_size_k) { for (int batch_count : batch_counts) { for (auto alpha : problem_alpha) { for (auto beta : problem_beta) { if (mode == cutlass::gemm::GemmUniversalMode::kGemm || mode == cutlass::gemm::GemmUniversalMode::kGemmSplitKParallel) { } cutlass::gemm::GemmCoord problem_size(n, n, k); TestbedRank2KUniversal testbed; passed = testbed.run( mode, problem_size, batch_count, cutlass::from_real(alpha), cutlass::from_real(beta) ); if (!passed) { return false; } } } } } } } return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace gemm } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////