/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #include #include "../../common/cutlass_unit_test.h" #include "cutlass/aligned_buffer.h" #include "cutlass/half.h" #include "cutlass/epilogue/thread/linear_combination_planar_complex.h" // Tensor Op #include "cutlass/gemm/warp/default_mma_tensor_op.h" // Volta Tensor Op #include "cutlass/gemm/warp/mma_tensor_op_sm70.h" #include "cutlass/epilogue/warp/fragment_iterator_volta_tensor_op.h" // Simt #include "cutlass/gemm/warp/mma_simt.h" #include "cutlass/gemm/warp/mma_simt_policy.h" // Epilogue components #include "cutlass/epilogue/threadblock/default_epilogue_planar_complex.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "testbed_planar_complex.h" ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(Epilogue_threadblock_epilogue, planar_complex_f32_f32_tensor_op_64x64_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor >::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex< Shape, WarpMmaTensorOp, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpiloguePlanarComplexTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(Epilogue_threadblock_epilogue, planar_complex_f16_f32_tensor_op_64x64_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor >::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex< Shape, WarpMmaTensorOp, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpiloguePlanarComplexTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(Epilogue_threadblock_epilogue, planar_complex_f16_f16_tensor_op_64x64_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor >::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex< Shape, WarpMmaTensorOp, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpiloguePlanarComplexTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(Epilogue_threadblock_epilogue, planar_complex_f32_f32_volta_tensor_op_64x64_32x32x4) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<32, 32, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>; using Element = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, Element, cutlass::layout::ColumnMajor, Element, cutlass::layout::RowMajor, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, Policy >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex< Shape, WarpMmaTensorOp, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm70, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpiloguePlanarComplexTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(Epilogue_threadblock_epilogue, planar_complex_simt_f32_64x64_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using Element = float; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = cutlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex< Shape, WarpMmaSimt, cutlass::arch::OpClassSimt, cutlass::arch::Sm50, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpiloguePlanarComplexTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(Epilogue_threadblock_epilogue, planar_complex_simt_f64_64x64_16x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<16, 32, 8>; using Element = double; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = cutlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombinationPlanarComplex< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpiloguePlanarComplex< Shape, WarpMmaSimt, cutlass::arch::OpClassSimt, cutlass::arch::Sm50, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpiloguePlanarComplexTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } /////////////////////////////////////////////////////////////////////////////////////////////////