/*************************************************************************************************** * Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMV interface */ #include #include #include #include "cutlass/cutlass.h" #include "cutlass/gemm/kernel/gemv.h" #include "cutlass/gemm/device/gemv.h" #include "../../common/cutlass_unit_test.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/gemm_complex.h" #include "testbed_utils.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace gemm { template class TestbedGemv { public: using ElementA = typename Gemv::ElementA; using LayoutA = typename Gemv::LayoutA; using ElementB = typename Gemv::ElementB; using ElementC = typename Gemv::ElementC; using ElementAccumulator = typename Gemv::ElementAccumulator; using ElementCompute = typename Gemv::EpilogueOutputOp::ElementCompute; using LayoutV = cutlass::layout::RowMajor; private: /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; uint64_t seed; cutlass::HostTensor tensor_A; cutlass::HostTensor tensor_B; cutlass::HostTensor tensor_C; cutlass::HostTensor tensor_D; cutlass::HostTensor reference_D; public: // // Methods // TestbedGemv( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } /// Helper to initialize a tensor view template bool initialize_tensor( cutlass::TensorView view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits::value; int bits_output = cutlass::sizeof_bits::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else { // TODO: Implement the rest EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Initializes data structures void initialize( cutlass::MatrixCoord problem_size ) { // // Allocate the GEMM workspace // tensor_A.resize(problem_size); tensor_B.resize({problem_size.column(), 1}); tensor_C.resize({problem_size.row(), 1}); tensor_D.resize({problem_size.row(), 1}); reference_D.resize({problem_size.row(), 1}, false); EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019)); EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018)); EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = typename Gemv::ElementA(1); tensor_B.host_view().at({0, 0}) = typename Gemv::ElementB(1); tensor_C.host_view().at({0, 0}) = typename Gemv::ElementC(1); cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view()); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D.sync_device(); } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( cutlass::MatrixCoord problem_size, ElementCompute alpha, ElementCompute beta) { tensor_D.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0); bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view()); EXPECT_TRUE(passed) << " mismatched reference"; if (!passed) { std::ofstream file("testbed_universal_errors.txt"); file << "problem: " << problem_size << ", alpha: " << alpha << ", beta: " << beta << "\n\n"; file << "A =\n" << tensor_A.host_view() << "\nB =\n" << tensor_B.host_view() << "\nC =\n" << tensor_C.host_view() << "\n\nReference =\n" << reference_D.host_view() << "\nComputed =\n" << tensor_D.host_view(); } return passed; } /// Verifies the result is a GEMM bool verify( cutlass::MatrixCoord problem_size, ElementCompute alpha, ElementCompute beta) { // // Verify // cutlass::reference::host::GemmComplex< typename Gemv::ElementA, typename Gemv::LayoutA, typename Gemv::ElementB, LayoutV, typename Gemv::ElementC, LayoutV, ElementCompute, ElementAccumulator >( {problem_size.row(), 1, problem_size.column()}, alpha, tensor_A.host_ref(), Gemv::kTransformA, tensor_B.host_ref(), Gemv::kTransformB, beta, tensor_C.host_ref(), reference_D.host_ref(), ElementAccumulator(0) ); return compare_reference(problem_size, alpha, beta); } /// Runs one problem size bool run( cutlass::MatrixCoord problem_size, ElementCompute alpha, ElementCompute beta) { this->initialize(problem_size); // // Initialize the GEMM operator // typename Gemv::Arguments arguments{ problem_size, {alpha, beta}, tensor_A.device_ref(), tensor_B.device_data(), tensor_C.device_data(), tensor_D.device_data(), tensor_B.layout().stride(0), tensor_C.layout().stride(0), tensor_D.layout().stride(0) }; Gemv gemm_op; size_t workspace_size = Gemv::get_workspace_size(arguments); cutlass::device_memory::allocation workspace(workspace_size); cutlass::Status status = gemm_op.initialize(arguments, workspace.get()); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Run the GEMM // status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = this->verify(problem_size, alpha, beta); return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template bool TestAllGemv() { using ElementCompute = typename Gemv::EpilogueOutputOp::ElementCompute; int M[] = { 8, 48, 192, 520 }; int K[] = { 8, 192, 528 }; double Alpha[] = { 1, 1.25 }; double Beta[] = { 0, 1, 1.25 }; for (int m : M) { for (int k : K) { for (double alpha : Alpha) { for (double beta : Beta) { TestbedGemv testbed; if (!testbed.run({m, k}, ElementCompute(alpha), ElementCompute(beta))) { return false; } } } } } return true; } } // namespace gemm } // namespace test ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f32n_f32_f32_simt_f32, Simple) { using ElementOutput = float; using LayoutA = cutlass::layout::ColumnMajor; using ElementAccumulator = float; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementOutput, // Element A LayoutA, // Layout A ElementOutput, // Element B ElementOutput, // Element C ElementAccumulator, // Element Accumulator EpilogueOp // Output operator > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f16n_f16_f32_simt_f32, Simple) { using ElementInput = cutlass::half_t; using ElementOutput = float; using LayoutA = cutlass::layout::ColumnMajor; using ElementAccumulator = float; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementInput, // Element A LayoutA, // Layout A ElementInput, // Element B ElementOutput, // Element C ElementAccumulator, // Element Accumulator EpilogueOp // Output operator > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f16n_f16_f16_simt_f32, Simple) { using ElementInput = cutlass::half_t; using ElementOutput = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementAccumulator = float; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementInput, // Element A LayoutA, // Layout A ElementInput, // Element B ElementOutput, // Element C ElementAccumulator, // Element Accumulator EpilogueOp // Output operator > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } /////////////////////////////////////////////////////////////////////////////////////////////////