/*************************************************************************************************** * Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include #include #include #include #include #include #include // to_Format<[u]intX> #include // to_Format namespace cute { ////////////////////////////////////////////////////////////////////////////////////////////////////// /// Barriers are 64-bit of user-managed information used in broadly two types syncronization patterns /// 1) arrive/wait on threads (usage: cp.async and warp-specialized kernels) /// 2) transaction-based (usage: TMA transaction where a CTA issues one transaction) ////////////////////////////////////////////////////////////////////////////////////////////////////// // Initialize barrier present in shared memory CUTE_HOST_DEVICE void initialize_barrier(uint64_t& smem_barrier, // 64 bits user-manged barrier in smem int thread_count = 1) // Thread count expected to arrive/wait on this barrier { #if defined(CUTE_ARCH_TMA_SM90_ENABLED) uint32_t smem_int_ptr = cast_smem_ptr_to_uint(&smem_barrier); asm volatile ("mbarrier.init.shared.b64 [%0], %1;\n" :: "r"(smem_int_ptr), "r"(thread_count)); #endif } // Set the number of bytes transfered per transaction CUTE_HOST_DEVICE void set_barrier_transaction_bytes(uint64_t& smem_barrier, // 64 bits user-manged barrier in smem uint32_t bytes) // Number of bytes transfered by per TMA transaction { #if defined(CUTE_ARCH_TMA_SM90_ENABLED) uint32_t smem_int_ptr = cast_smem_ptr_to_uint(&smem_barrier); asm volatile ("mbarrier.arrive.expect_tx.shared.b64 _, [%0], %1;\n" :: "r"(smem_int_ptr), "r"(bytes)); #endif } // Barrier wait CUTE_HOST_DEVICE void wait_barrier(uint64_t& smem_barrier, // 64 bits user-manged barrier in smem int phase_bit) // Current phase bit the barrier waiting to flip { #if defined(CUTE_ARCH_TMA_SM90_ENABLED) uint32_t smem_int_ptr = cast_smem_ptr_to_uint(&smem_barrier); asm volatile( "{\n" ".reg .pred P1;\n" "LAB_WAIT:\n" "mbarrier.try_wait.parity.shared.b64 P1, [%0], %1;\n" "@P1 bra.uni DONE;\n" "bra.uni LAB_WAIT;\n" "DONE:\n" "}\n" :: "r"(smem_int_ptr), "r"(phase_bit)); #endif } // Barrier arrive CUTE_HOST_DEVICE void arrive_barrier(uint64_t& smem_barrier) // 64 bits user-manged barrier in smem { #if defined(CUTE_ARCH_TMA_SM90_ENABLED) uint32_t smem_int_ptr = cast_smem_ptr_to_uint(&smem_barrier); asm volatile( "{\n" ".reg .b64 state; \n" "mbarrier.arrive.shared.b64 state, [%0];\n" "}\n" :: "r"(smem_int_ptr)); #endif } //////////////////////////////////////////////////////////////////////////////////////////////////// // TMA Descriptor and utilities //////////////////////////////////////////////////////////////////////////////////////////////////// namespace TMA { enum class SmemSwizzleBits : uint8_t { DISABLE = 0, B32 = 1, B64 = 2, B128 = 3, }; #if (__CUDACC_VER_MAJOR__ >= 12) template inline CUtensorMapDataType to_CUtensorMapDataType() { if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_UINT8; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_UINT8; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_UINT16; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_UINT32; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_UINT64; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_INT32; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_INT64; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_FLOAT16; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_FLOAT32; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_FLOAT64; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_BFLOAT16; } else if constexpr (std::is_same::value) { return CU_TENSOR_MAP_DATA_TYPE_TFLOAT32; } else { static_assert(sizeof(T) < 0, "Unknown TMA Format!"); } } inline CUtensorMapSwizzle to_CUtensorMapSwizzle(SmemSwizzleBits const& t) { switch (t) { default: assert(false && "Unknown SmemSwizzleBits!"); case SmemSwizzleBits::DISABLE: return CU_TENSOR_MAP_SWIZZLE_NONE; case SmemSwizzleBits::B32: return CU_TENSOR_MAP_SWIZZLE_32B; case SmemSwizzleBits::B64: return CU_TENSOR_MAP_SWIZZLE_64B; case SmemSwizzleBits::B128: return CU_TENSOR_MAP_SWIZZLE_128B; } } #endif // (__CUDACC_VER_MAJOR__ >= 12) } // end namespace TMA #if (__CUDACC_VER_MAJOR__ >= 12) using TmaDescriptor = CUtensorMap; #else using TmaDescriptor = struct { char bytes[128]; }; #endif //////////////////////////////////////////////////////////////////////////////////////////////////// /// Initiates a TensorMap Prefetch //////////////////////////////////////////////////////////////////////////////////////////////////// CUTE_HOST_DEVICE void prefetch_tma_descriptor(TmaDescriptor const* desc_ptr) { #if defined(CUTE_ARCH_TMA_SM90_ENABLED) uint64_t gmem_int_desc = reinterpret_cast(desc_ptr); // Prefetch TMA Descriptor using generic addressing (i.e. no specific state space: const or param) asm volatile ( "prefetch.tensormap [%0];" : : "l"(gmem_int_desc) : "memory"); #else CUTE_RUNTIME_ASSERT("Trying to use TMA Descriptor Prefetch without CUTE_ARCH_TMA_SM90_ENABLED."); #endif } /////////////////////////////////////////////////////////////////////////////// } // end namespace cute