/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Template for GEMM performing a reduction over K partitions in parallel. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/gemm/gemm.h" #include "cutlass/matrix_coord.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate typename Epilogue_, ///! Epilogue typename ThreadblockSwizzle_ ///! Threadblock swizzling function > struct GemmSplitKParallel { using Mma = Mma_; using Epilogue = Epilogue_; using OutputOp = typename Epilogue::OutputOp; using ThreadblockSwizzle = ThreadblockSwizzle_; /// Warp count (concept: GemmShape) using WarpCount = typename Mma::WarpCount; static int const kThreadCount = 32 * WarpCount::kCount; static int const kAlignmentK = Mma::Operator::Shape::kK; /// Parameters structure struct Params { cutlass::gemm::GemmCoord problem_size; cutlass::gemm::GemmCoord grid_tiled_shape; int swizzle_log_tile; typename Mma::IteratorA::Params params_A; typename Mma::IteratorA::TensorRef ref_A; typename Mma::IteratorB::Params params_B; typename Mma::IteratorB::TensorRef ref_B; typename Epilogue::OutputTileIterator::Params params_D; typename Epilogue::OutputTileIterator::TensorRef ref_D; typename OutputOp::Params output_op; int64_t splitk_slice_stride; int gemm_k_size; // // Methods // CUTLASS_HOST_DEVICE Params(): swizzle_log_tile(0) { } CUTLASS_HOST_DEVICE Params( cutlass::gemm::GemmCoord const & problem_size, cutlass::gemm::GemmCoord const & grid_tiled_shape, typename Mma::IteratorA::TensorRef ref_A, typename Mma::IteratorB::TensorRef ref_B, typename Epilogue::OutputTileIterator::TensorRef ref_D, typename OutputOp::Params output_op, int64_t splitk_slice_stride ): problem_size(problem_size), grid_tiled_shape(grid_tiled_shape), swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)), params_A(ref_A.layout()), ref_A(ref_A), params_B(ref_B.layout()), ref_B(ref_B), params_D(ref_D.layout()), ref_D(ref_D), output_op(output_op), splitk_slice_stride(splitk_slice_stride) { int full_gemm_k_iterations = problem_size.k() / Mma::Shape::kK; int gemm_k_iterations = full_gemm_k_iterations / grid_tiled_shape.k(); gemm_k_size = gemm_k_iterations * Mma::Shape::kK; } }; /// Shared memory storage structure union SharedStorage { typename Mma::SharedStorage main_loop; typename Epilogue::SharedStorage epilogue; }; // // Methods // CUTLASS_HOST_DEVICE GemmSplitKParallel() { } /// Executes one GEMM CUTLASS_DEVICE void operator()(Params const ¶ms, SharedStorage &shared_storage) { // Compute threadblock location ThreadblockSwizzle threadblock_swizzle; cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); // Early exit if CTA is out of range if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() || params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) { return; } // Compute initial location in logical coordinates cutlass::MatrixCoord tb_offset_A{ threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.k() * params.gemm_k_size, }; cutlass::MatrixCoord tb_offset_B{ threadblock_tile_offset.k() * params.gemm_k_size, threadblock_tile_offset.n() * Mma::Shape::kN }; // Problem size is a function of threadblock index in the K dimension int problem_size_k; if (threadblock_tile_offset.k() + 1 == params.grid_tiled_shape.k()) { problem_size_k = params.problem_size.k(); } else { problem_size_k = (threadblock_tile_offset.k() + 1) * params.gemm_k_size; } // Compute threadblock-scoped matrix multiply-add int gemm_k_iterations = (problem_size_k - tb_offset_A.column() + Mma::Shape::kK - 1) / Mma::Shape::kK; // Compute position within threadblock int thread_idx = threadIdx.x; // Construct iterators to A and B operands typename Mma::IteratorA iterator_A( params.params_A, params.ref_A.data(), {params.problem_size.m(), problem_size_k}, thread_idx, tb_offset_A); typename Mma::IteratorB iterator_B( params.params_B, params.ref_B.data(), {problem_size_k, params.problem_size.n()}, thread_idx, tb_offset_B); int warp_idx = threadIdx.x / 32; int lane_idx = threadIdx.x % 32; // // Main loop // // Construct thread-scoped matrix multiply Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); typename Mma::FragmentC accumulators; accumulators.clear(); mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators); // // Epilogue // OutputOp output_op(params.output_op); // // Masked tile iterators constructed from members // threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); //assume identity swizzle MatrixCoord threadblock_offset( threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.n() * Mma::Shape::kN ); // Tile iterator writing to output tile typename Epilogue::OutputTileIterator iterator_D( params.params_D, params.ref_D.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); iterator_D.add_pointer_offset(params.splitk_slice_stride * threadblock_tile_offset.k()); // Execute the epilogue Epilogue epilogue( shared_storage.epilogue, thread_idx, warp_idx, lane_idx); // Run efficient epilogue epilogue(output_op, iterator_D, accumulators, iterator_D); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace gemm } // namespace cutlass