/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/gemm/gemm.h" #include "cutlass/matrix_coord.h" #include "cutlass/semaphore.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate typename Epilogue_, ///! Epilogue typename ThreadblockSwizzle_, ///! Threadblock swizzling function bool SplitKSerial ///! If true, code supporting split-K via serial reduction is enabled. > struct SparseGemmRowBroadcast { using Mma = Mma_; using Epilogue = Epilogue_; using OutputOp = typename Epilogue::OutputOp; using ThreadblockSwizzle = ThreadblockSwizzle_; static bool const kSplitKSerial = SplitKSerial; static int const kSparse = Mma::kSparse; static int const kMetaSizeInBits = Mma::kMetaSizeInBits; static int const kMaxID2 = Mma::kMaxID2; static int const kElementsPerElementE = Mma::kElementsPerElementE; using ElementE = typename Mma::ElementE; using LayoutE = typename Mma::LayoutE; /// Warp count (concept: GemmShape) using WarpCount = typename Mma::WarpCount; static int const kThreadCount = 32 * WarpCount::kCount; /// Parameters structure struct Params { cutlass::gemm::GemmCoord problem_size; cutlass::gemm::GemmCoord grid_tiled_shape; int swizzle_log_tile; typename Mma::IteratorA::Params params_A; typename Mma::IteratorA::TensorRef ref_A; typename Mma::IteratorB::Params params_B; typename Mma::IteratorB::TensorRef ref_B; typename Epilogue::OutputTileIterator::Params params_C; typename Epilogue::OutputTileIterator::TensorRef ref_C; typename Epilogue::OutputTileIterator::Params params_D; typename Epilogue::OutputTileIterator::TensorRef ref_D; typename Mma::IteratorE::Params params_E; typename Mma::IteratorE::TensorRef ref_E; typename OutputOp::Params output_op; int *semaphore; int gemm_k_iterations; int gemm_k_size; // // Methods // CUTLASS_HOST_DEVICE Params(): swizzle_log_tile(0), semaphore(0), gemm_k_iterations(0), gemm_k_size(0) { } CUTLASS_HOST_DEVICE Params( cutlass::gemm::GemmCoord const & problem_size, cutlass::gemm::GemmCoord const & grid_tiled_shape, typename Mma::IteratorA::TensorRef ref_A, typename Mma::IteratorB::TensorRef ref_B, typename Epilogue::OutputTileIterator::TensorRef ref_C, typename Epilogue::OutputTileIterator::TensorRef ref_D, typename Mma::IteratorE::TensorRef ref_E, typename OutputOp::Params output_op = typename OutputOp::Params(), int *workspace = nullptr ): problem_size(problem_size), grid_tiled_shape(grid_tiled_shape), swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)), params_A(ref_A.layout()), ref_A(ref_A), params_B(ref_B.layout()), ref_B(ref_B), params_C(ref_C.layout()), ref_C(ref_C), params_D(ref_D.layout()), ref_D(ref_D), params_E(ref_E.layout()), ref_E(ref_E), output_op(output_op) { int total_gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK; int gemm_k_iterations = (total_gemm_k_iterations + grid_tiled_shape.k() - 1) / grid_tiled_shape.k(); gemm_k_size = gemm_k_iterations * Mma::Shape::kK; semaphore = workspace; } }; /// Shared memory storage structure union SharedStorage { typename Mma::SharedStorage main_loop; typename Epilogue::SharedStorage epilogue; }; // // Methods // CUTLASS_HOST_DEVICE SparseGemmRowBroadcast() { } /// Determines whether kernel satisfies alignment static Status can_implement( cutlass::gemm::GemmCoord const & problem_size, typename Mma::IteratorA::TensorRef ref_A, typename Mma::IteratorB::TensorRef ref_B, typename Epilogue::OutputTileIterator::TensorRef ref_C, typename Epilogue::OutputTileIterator::TensorRef ref_D, typename Mma::IteratorE::TensorRef ref_E) { static int const kAlignmentA = Mma::IteratorA::AccessType::kElements; static int const kAlignmentB = Mma::IteratorB::AccessType::kElements; static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess; static int const kAlignmentE = Mma::IteratorE::AccessType::kElements; if (!TensorRef_aligned(ref_A, kAlignmentA)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_B, kAlignmentB)) { return Status::kErrorMisalignedOperand; } // if (!TensorRef_aligned(ref_C, kAlignmentC)) { // return Status::kErrorMisalignedOperand; // } if (!TensorRef_aligned(ref_D, kAlignmentC)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_E, kAlignmentE)) { return Status::kErrorMisalignedOperand; } if ((problem_size.m() % kAlignmentA) || ((problem_size.k() / kSparse) % kAlignmentA) || (problem_size.n() % kAlignmentB) || (problem_size.k() % kAlignmentB) || (problem_size.m() % kAlignmentC) || (problem_size.n() % kAlignmentC) || (problem_size.m() % kAlignmentE) || ((problem_size.k() / kSparse) % kAlignmentE)) { return Status::kErrorMisalignedOperand; } // The k dimension has to be the multiple of the Threadblock k because out // of bound meta data would be initialized to 0 by acync.zfill but 0 is not // a valid meta data. if (problem_size.k() % Mma::Shape::kK) { return Status::kErrorMisalignedOperand; } // M dimension has to be multiple of 32 (sparse float) or 16 (sparse int) // because of the row reordering of operand E static int const kAlignmentM = (sizeof(ElementE) == 2) ? 32 : 16; if (problem_size.m() % kAlignmentM) { return Status::kErrorMisalignedOperand; } return Status::kSuccess; } /// Executes one GEMM CUTLASS_DEVICE void operator()(Params const ¶ms, SharedStorage &shared_storage) { // Compute threadblock location ThreadblockSwizzle threadblock_swizzle; cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); // Early exit if CTA is out of range if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() || params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) { return; } // Compute initial location in logical coordinates cutlass::MatrixCoord tb_offset_A{ threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.k() * params.gemm_k_size / kSparse, }; cutlass::MatrixCoord tb_offset_B{ threadblock_tile_offset.k() * params.gemm_k_size, threadblock_tile_offset.n() * Mma::Shape::kN }; cutlass::MatrixCoord tb_offset_E{ threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.k() * params.gemm_k_size / kSparse, }; // Problem size is a function of threadblock index in the K dimension int problem_size_k = min( params.problem_size.k(), (threadblock_tile_offset.k() + 1) * params.gemm_k_size); // Compute threadblock-scoped matrix multiply-add int gemm_k_iterations = (problem_size_k - tb_offset_B.row() + Mma::Shape::kK - 1) / Mma::Shape::kK; // Compute position within threadblock int thread_idx = threadIdx.x; // Construct iterators to A, B, and E operands typename Mma::IteratorA iterator_A( params.params_A, params.ref_A.data(), {params.problem_size.m(), problem_size_k / kSparse}, thread_idx, tb_offset_A); typename Mma::IteratorB iterator_B( params.params_B, params.ref_B.data(), {problem_size_k, params.problem_size.n()}, thread_idx, tb_offset_B); typename Mma::IteratorE iterator_E( params.params_E, params.ref_E.data(), {params.problem_size.m(), problem_size_k / kSparse / kElementsPerElementE}, thread_idx, tb_offset_E); // Broadcast the warp_id computed by lane 0 to ensure dependent code // is compiled as warp-uniform. int warp_idx = canonical_warp_idx(); int lane_idx = threadIdx.x % 32; // // Main loop // // Construct thread-scoped matrix multiply Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); typename Mma::FragmentC accumulators; accumulators.clear(); if (!kSplitKSerial || gemm_k_iterations > 0) { // Compute threadblock-scoped matrix multiply-add mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, iterator_E, accumulators); } // // Epilogue // OutputOp output_op(params.output_op); // // Masked tile iterators constructed from members // threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); //assume identity swizzle MatrixCoord threadblock_offset( threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.n() * Mma::Shape::kN ); int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m(); // Construct the semaphore. Semaphore semaphore(params.semaphore + block_idx, thread_idx); // If performing a reduction via split-K, fetch the initial synchronization if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { // Fetch the synchronization lock initially but do not block. semaphore.fetch(); // Indicate which position in a serial reduction the output operator is currently updating output_op.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k()); } // Tile iterator loading from source tensor. typename Epilogue::OutputTileIterator iterator_C( params.params_C, params.ref_C.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); // Tile iterator writing to destination tensor. typename Epilogue::OutputTileIterator iterator_D( params.params_D, params.ref_D.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); Epilogue epilogue( shared_storage.epilogue, thread_idx, warp_idx, lane_idx); // Wait on the semaphore - this latency may have been covered by iterator construction if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { // For subsequent threadblocks, the source matrix is held in the 'D' tensor. if (threadblock_tile_offset.k()) { iterator_C = iterator_D; } semaphore.wait(threadblock_tile_offset.k()); __threadfence(); } // Execute the epilogue operator to update the destination tensor. epilogue(output_op, iterator_D, accumulators, iterator_C); // // Release the semaphore // if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { int lock = 0; if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) { // The final threadblock resets the semaphore for subsequent grids. lock = 0; } else { // Otherwise, the semaphore is incremented lock = threadblock_tile_offset.k() + 1; } __threadfence(); semaphore.release(lock); } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace gemm } // namespace cutlass