/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "../common/cutlass_unit_test.h" #include "cutlass/tensor_view.h" #include "cutlass/layout/matrix.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/host_tensor.h" //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(TensorView, rank2_contiguous_dynamic) { int const M = 8; int const N = 16; typedef cutlass::TensorView ContiguousTensorView; cutlass::layout::Matrix layouts[] = { cutlass::layout::Matrix::kColumnMajor, cutlass::layout::Matrix::kRowMajor }; cutlass::Coord<2> bounds = cutlass::make_Coord(M - 2, N - 2); for (int i = 0; i < 2; ++i) { int matrix_data[M * N] = { 0 }; int row_stride; int col_stride; if (layouts[i] == cutlass::layout::Matrix::kColumnMajor) { row_stride = 1; col_stride = M; } else { row_stride = N; col_stride = 1; } // Use helper to determine stride vector from leading dimension ContiguousTensorView view( matrix_data, cutlass::layout::ContiguousMatrix::packed(cutlass::make_Coord(M, N), layouts[i]), bounds); ASSERT_TRUE(view.good()); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { cutlass::Coord<2> coord = cutlass::make_Coord(m, n); if (view.contains(coord)) { view.at(coord) = m * N + n; } } } for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { int expected = 0; if (m < bounds[0] && n < bounds[1]) { expected = int(m * N + n); } EXPECT_EQ(matrix_data[m * row_stride + n * col_stride], expected); } } } } //////////////////////////////////////////////////////////////////////////////////////////////////// // // Uncomment the following line to observe output from printing TensorView objects // // #define OBSERVE_TENSORVIEW_IO // uncomment to enable printing #ifdef OBSERVE_TENSORVIEW_IO // This test construct a TensorView of rank=2 with matrix layouts known at runtime. This // uses TensorRefMapFunc classes defined in cutlass/matrix_traits.h to define the mapping // from logical tensor indices to storage in memory. // // Helpers in tools/util/tensor_view_io.h print both the logical TensorView and the // linear memory of the tensor. TEST(TensorView, contiguous) { int const M = 8; int const N = 16; typedef cutlass::TensorView< int32_t, cutlass::layout::ContiguousLayout> ContiguousTensorView; cutlass::layout::Matrix layouts[] = { cutlass::layout::Matrix::kColumnMajor, cutlass::layout::Matrix::kRowMajor }; cutlass::Coord<2> bounds = cutlass::make_Coord(M, N); for (int i = 0; i < 2; ++i) { int matrix_data[M * N] = { 0 }; int ldm; int row_stride; int col_stride; if (layouts[i] == cutlass::layout::Matrix::kColumnMajor) { row_stride = 1; col_stride = M; ldm = col_stride; } else { row_stride = N; col_stride = 1; ldm = row_stride; } // Use helper to determine stride vector from leading dimension ContiguousTensorView view( matrix_data, cutlass::layout::ContiguousLayout::stride(layouts[i], ldm), bounds); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { cutlass::Coord<2> coord = cutlass::make_Coord(m, n); if (view.contains(coord)) { view.at(coord) = m * N + n; } } } std::cout << "---------\n"; std::cout << (layouts[i] == cutlass::layout::Matrix::kColumnMajor ? "Column-major:" : "Row-major:") << "\n\n"; std::cout << "Logical view:\n"; std::cout.width(4); std::cout << view << "\n" << std::endl; // Print TensorView object. std::cout << "Linear memory:"; for (int idx = 0; idx < view.capacity(); ++idx) { if (!(idx % (layouts[i] == cutlass::layout::Matrix::kColumnMajor ? M : N))) { std::cout << std::endl; } std::cout << std::setw(4) << view.at(idx) << " "; } std::cout << "\n" << std::endl; } } // This test is similar to the previous except it uses a column-major, interleaved data // layout. The test prints both the logical representation (a typical column-major matrix) // and a representation of linear memory. // // Note, the interleave=4 structure implies that every four consecutive elements in the // same row shall be adjacent in memory followed by the next row. TEST(TensorView, rank2_column_major_interleaved) { int const M = 16; int const N = 16; int const kInterleave = 4; int matrix_data[M * N] = {0}; cutlass::Coord<2> bounds = cutlass::make_Coord(M, N); // Define the TensorRefMapFunc for a column-major interleaved matrix format typedef cutlass::layout::ColumnMajorInterleaved TensorRefMapFunc; // Define a TensorView of rank=2 using the column-major interleaved mapping function typedef cutlass::TensorView< int, TensorRefMapFunc> InterleavedTensorView; InterleavedTensorView view( matrix_data, TensorRefMapFunc::stride(M), bounds); // Initialize for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { view.at(cutlass::make_Coord(m, n)) = m + n * M; } } // Print logical view std::cout << "Column-major, interleave=" << kInterleave << " (logical view):\n"; std::cout << std::setw(4) << view << "\n" << std::endl; // Now define a linear view of the same data in memory typedef cutlass::TensorView LinearTensorView; LinearTensorView linear_view(matrix_data, cutlass::make_Coord(N), bounds); std::cout << "Linear view in memory:\n"; std::cout << std::setw(4) << linear_view << std::endl; } #endif //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(TensorView, int4) { int const M = 4; int const N = 8; using T = cutlass::int4b_t; cutlass::HostTensor tensor({M, N}); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { T x = T(n ^ m); // some simple hash tensor.host_view().at({m, n}) = x; } } for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { int x = (n ^ m); // some simple hash EXPECT_TRUE(int(tensor.host_view().at({m, n})) == x); } } EXPECT_EQ(tensor.size(), M * N); } TEST(TensorView, uint4) { int const M = 4; int const N = 8; using T = cutlass::uint4b_t; cutlass::HostTensor tensor({M, N}); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { T x = T(n ^ m); // some simple hash tensor.host_view().at({m, n}) = x; } } for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { int x = (n ^ m); // some simple hash EXPECT_TRUE(int(tensor.host_view().at({m, n})) == x); } } EXPECT_EQ(tensor.size(), M * N); } ////////////////////////////////////////////////////////////////////////////////////////////////////