/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide Implicit GEMM interface */ #include "../../common/cutlass_unit_test.h" #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/epilogue/thread/linear_combination_bias_elementwise.h" #include "cutlass/epilogue/thread/linear_combination_residual_block.h" #include "cutlass/epilogue/thread/activation.h" #include "cutlass/conv/kernel/default_conv2d_fprop_with_broadcast.h" #include "cutlass/conv/device/implicit_gemm_convolution.h" #include "conv2d_with_broadcast_testbed.h" #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) TEST(SM75_Device_Conv2d_Fprop_With_Broadcast_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32, 128x128_32x2_64x64x32) { /// Conv operation element types for the Gemm equivalent (ImplicitGemm) using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationBiasElementwise< cutlass::half_t, float, float, cutlass::half_t, cutlass::half_t, 8, cutlass::epilogue::thread::ReLu >; /// Device-level Conv2d instance using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFpropWithBroadcast< ElementA, cutlass::layout::TensorNHWC, ElementB, cutlass::layout::TensorNHWC, ElementC, cutlass::layout::TensorNHWC, ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, cutlass::gemm::GemmShape<128, 128, 32>, cutlass::gemm::GemmShape<64, 64, 32>, cutlass::gemm::GemmShape<16, 8, 8>, EpilogueOutputOp, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, 2, cutlass::arch::OpMultiplyAdd, cutlass::conv::IteratorAlgorithm::kAnalytic >::Kernel; using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution; /// Run all unit test sizes with device-level Conv2d instance EXPECT_TRUE(test::conv::device::TestAllConv2dWithBroadcast()); } // Test residual block fusion: UnaryOp(BinaryOp(ActivationOp(Conv2d(X) + bias), residual)) // LinearCombinationResidualBlock does not support the split-k mode unless ActivationOp is Identity. // This is because the activation needs to be applied to the fully accumulated output of the Conv2d op, // which only the last thread block would have an access to, before applying BinaryOp. // The epilogue functor in the last thread block would have to be given three inputs, namely // partial outputs, bias, and residual, but this is not supported in the current interface. // Set TestSplitK = false to skip split-k tests with non-trivial ActivationOp. template < typename ElementAccumulator, template class ActivationOp, template class BinaryOp, template class UnaryOp, bool TestSplitK = true > void TestResidaulBlock() { using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using ElementD = ElementC; using ElementCompute = ElementAccumulator; using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationResidualBlock< ElementD, ElementAccumulator, ElementCompute, ElementC, 8, ActivationOp, BinaryOp, UnaryOp >; using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFpropWithBroadcast< ElementA, cutlass::layout::TensorNHWC, ElementB, cutlass::layout::TensorNHWC, ElementC, cutlass::layout::TensorNHWC, ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm75, cutlass::gemm::GemmShape<128, 128, 32>, cutlass::gemm::GemmShape<64, 64, 32>, cutlass::gemm::GemmShape<16, 8, 8>, EpilogueOutputOp, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, 2, cutlass::arch::OpMultiplyAdd, cutlass::conv::IteratorAlgorithm::kAnalytic >::Kernel; using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution; struct ReferenceOp { using OutputOp = typename Conv2dFprop::EpilogueOutputOp; using ElementZ = typename OutputOp::ElementZ; ActivationOp activation; BinaryOp binary_op; UnaryOp unary_op; void operator()(ElementZ &Z, ElementZ&, ElementCompute conv2d, ElementCompute residual) { Z = ElementZ(unary_op(binary_op(activation(conv2d), residual))); } }; bool passed = test::conv::device::TestAllConv2dWithBroadcast(); EXPECT_TRUE(passed); } TEST(SM75_Device_Conv2d_Fprop_With_Residual_Block_Plus_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32, 128x128_32x2_64x64x32) { // Resnet TestResidaulBlock(); } TEST(SM75_Device_Conv2d_Fprop_With_Residual_Block_Multiply_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32, 128x128_32x2_64x64x32) { // EfficientNet V2 // Do not run split-K tests since the activation op is not Identity. TestResidaulBlock(); } //////////////////////////////////////////////////////////////////////////////// #endif // CUTLASS_ARCH_MMA_SM75_SUPPORTED ////////////////////////////////////////////////////////////////////////////////