/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Implicit GEMM testbed sizes for Conv2d problem */ #pragma once #include #include "cutlass/cutlass.h" #include "cutlass/layout/matrix.h" #include "cutlass/conv/convolution.h" #include "cutlass/conv/conv2d_problem_size.h" namespace test { namespace conv { namespace device { using Conv2dProblemVector = std::vector; // // Structures to prune items from Conv2dProblemVector // // Specification template for pruning items for convolution problem lists template struct Specification { virtual ~Specification() = default; virtual bool is_satisfied(T item) const = 0; }; // input size (NHWC) specification struct InputSizeSpecification : Specification { cutlass::Tensor4DCoord input_size; InputSizeSpecification(cutlass::Tensor4DCoord input_size_) : input_size(input_size_) {} bool is_satisfied(cutlass::conv::Conv2dProblemSize item) const override { return ((input_size.n() == item.N) && (input_size.h() == item.H) && (input_size.w() == item.W) && (input_size.c() == item.C)); } }; // stride (stride_h, stride_w) specification struct StrideSpecification : Specification { cutlass::MatrixCoord stride; StrideSpecification(cutlass::MatrixCoord stride_) : stride(stride_) {} bool is_satisfied(cutlass::conv::Conv2dProblemSize item) const override { return ((stride.row() == item.stride_h) && (stride.column() == item.stride_h)); } }; // channel (C,K) specification, must be multiple of minimum channel struct ChannelDivisibilitySpecification : Specification { int channel_multiple; ChannelDivisibilitySpecification(int channel_multiple_) : channel_multiple(channel_multiple_) {} bool is_satisfied(cutlass::conv::Conv2dProblemSize item) const override { return ((item.K % channel_multiple == 0) && (item.C % channel_multiple == 0)); } }; // // Pruning function for items from Conv2dProblemVector based on a Specification // inline Conv2dProblemVector prune(Conv2dProblemVector const &items, Specification const &spec) { Conv2dProblemVector pruned_list; for (auto& p : items) if (spec.is_satisfied(p)) pruned_list.push_back(p); return pruned_list; } //////////////////////////////////////////////////////////////////////////// /// Structure TestbedConv2dProblemSizes initializes and holds conv default and /// important network sizes //////////////////////////////////////////////////////////////////////////// struct TestbedConv2dProblemSizes { // // Data members // int minimum_channel_size; Conv2dProblemVector conv2d_default_sizes; Conv2dProblemVector conv2d_rigorous_sizes; Conv2dProblemVector conv2d_resnet50_sizes; Conv2dProblemVector conv2d_resnet50_sizes_perf; // // Methods // /// Default ctor TestbedConv2dProblemSizes(int minimum_channel_size_ = 64): minimum_channel_size (minimum_channel_size_) { initialize_conv2d_default_sizes(); initialize_conv2d_rigorous_sizes(); initialize_conv2d_resnet50_sizes(conv2d_resnet50_sizes, 1 /*batch-size*/); initialize_conv2d_resnet50_sizes(conv2d_resnet50_sizes_perf, 34 /*batch-size*/); filter_all(); } /// Eliminates some illegal cases void filter_all() { Conv2dProblemVector *problems_vectors[] = { &conv2d_default_sizes, &conv2d_rigorous_sizes, &conv2d_resnet50_sizes, &conv2d_resnet50_sizes_perf }; for (Conv2dProblemVector *problems : problems_vectors) { Conv2dProblemVector filtered; for (cutlass::conv::Conv2dProblemSize const & problem : *problems) { if (!(problem.C % minimum_channel_size)) { filtered.push_back(problem); } } *problems = filtered; } } // Add a few standard convolution problem sizes void initialize_conv2d_default_sizes() { //////////////////////////////////////////////////////////////////////////////////////////// // Small input size x stride (1,1) // C < CTA::K and non-multiples of CTA::K. Typical CTA::K = {32, 64} //////////////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 1, 1, minimum_channel_size}, // input size (NHWC) {8, 1, 1, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 1, 8, minimum_channel_size}, // input size (NHWC) {8, 1, 3, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 7, 8, minimum_channel_size}, // input size (NHWC) {8, 3, 3, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 7, 9, minimum_channel_size}, // input size (NHWC) {8, 4, 4, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {2, 7, 9, minimum_channel_size}, // input size (NHWC) {8, 5, 5, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {3, 7, 9, minimum_channel_size}, // input size (NHWC) {8, 6, 5, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {3, 7, 9, minimum_channel_size}, // input size (NHWC) {8, 6, 6, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {3, 7, 9, minimum_channel_size}, // input size (NHWC) {8, 7, 7, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////////////// // Small input size x stride (2,2) // C < CTA::K and non-multiples of CTA::K. Typical CTA::K = {32, 64} //////////////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 11, 7, minimum_channel_size}, // input size (NHWC) {8, 1, 1, minimum_channel_size}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 11, 7, minimum_channel_size}, // input size (NHWC) {8, 3, 3, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 13, 11, minimum_channel_size}, // input size (NHWC) {8, 1, 1, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 17, 19, minimum_channel_size}, // input size (NHWC) {16, 2, 2, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 23, 5, minimum_channel_size}, // input size (NHWC) {16, 3, 3, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 13, 17, 8}, // input size (NHWC) {24, 3, 3, 8}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 23, 21, 8}, // input size (NHWC) {24, 3, 3, 8}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {3, 3}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 20, 24, 8}, // input size (NHWC) {40, 3, 3, 8}, // filter size (KRSC) {3, 3, 3, 3}, // padding (pad_h, _, pad_w, _) {3, 3}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // Medium input size (1x16x16x128), filter size (1x1, 2x2, 3x3, 5x5), stride (1, 1) //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 15, 19, 160}, // input size (NHWC) {224, 1, 1, 160}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 19, 37, 160}, // input size (NHWC) {224, 3, 3, 160}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 16, 16, 160}, // input size (NHWC) {224, 2, 3, 160}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 23, 21, 128}, // input size (NHWC) {224, 3, 3, 128}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 29, 37, 160}, // input size (NHWC) {224, 5, 5, 160}, // filter size (KRSC) {2, 2, 2, 2}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // C > CTA::K and non-multiples of CTA::K. Typical CTA::K = {32, 64} //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 15, 19, 32 + minimum_channel_size}, // input size (NHWC) {96, 3, 3, 32 + minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 16, 24, 64 + minimum_channel_size}, // input size (NHWC) {96, 3, 3, 64 + minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // Medium input size, filter size (1x1, 3,x3, 5x5, 7x7), stride (2, 2) //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 13, 16, 288}, // input size (NHWC) {160, 5, 5, 288}, // filter size (KRSC) {2, 2, 2, 2}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 55, 51, 256}, // input size (NHWC) {512, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 71, 80, 32}, // input size (NHWC) {64, 5, 5, 32}, // filter size (KRSC) {2, 2, 2, 2}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 224, 224, 8}, // input size (NHWC) {64, 7, 7, 8}, // filter size (KRSC) {3, 3, 3, 3}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // Medium input size stride (3, 3), filter (3, 3), non-default padding //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 27, 23, 256}, // input size (NHWC) {512, 3, 3, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {3, 3}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // Medium input size padding > stride, asymmetric filter, padding and striding //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 27, 31, 256}, // input size (NHWC) {512, 3, 3, 256}, // filter size (KRSC) {5, 5, 7, 7}, // padding (pad_h, _, pad_w, _) {3, 4}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 27, 35, 256}, // input size (NHWC) {512, 7, 5, 256}, // filter size (KRSC) {11, 11, 7, 7}, // padding (pad_h, _, pad_w, _) {3, 5}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // Medium input size *mixed* stride (1, 2) and (2, 1), // filter (3, 3), default padding //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 27, 27, 256}, // input size (NHWC) {512, 3, 3, 256}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 27, 27, 256}, // input size (NHWC) {512, 3, 3, 256}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {2, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); ///////////////////////////////////////////////////////////////////////////// // Additional input size ///////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {3, 28, 28, 256}, // input size (NHWC) {256, 2, 2, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 32, 32, 16}, // input size (NHWC) {32, 3, 3, 16}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {6, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {32, 24, 32, 32}, // input size (NHWC) {32, 1, 2, 32}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {4, 4, 5, 128}, // input size (NHWC) {256, 3, 6, 128}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) {4, 3, 3, 256} // output size (NPQK) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {4, 2, 3, 256}, // input size (NHWC) {328, 3, 5, 256}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) {4, 1, 1, 328} // output size (NPQK) )); } // Add a few large and rigorous convolution problem sizes void initialize_conv2d_rigorous_sizes() { #if CUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED conv2d_rigorous_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 124, 224, 96}, // input size (NHWC) {24, 7, 7, 96}, // filter size (KRSC) {1, 229, 129, 32} // output size (NPQK) )); conv2d_rigorous_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 233, 35, 48}, // input size (NHWC) {24, 7, 5, 48}, // filter size (KRSC) {1, 233, 35, 24} // output size (NPQK) )); #endif } // Add resent50 layers to unit testing sizes void initialize_conv2d_resnet50_sizes(Conv2dProblemVector &conv2d_problem_vector, int batch_size = 1){ #if 0 // Resnet50 first layer (layer_id = 0) with channel = 3 is not supported in cutlass conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( [1, 224, 224, 3], // input size (NHWC) [64, 7, 7, 3], // filter size (KRSC) [3, 3, 3, 3], // padding (pad_h, _, pad_w, _) [2, 2], // stride (stride_h, stride_w) [1, 1], // dilation (dilation_h, dilation_w) )); #endif conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 64}, // input size (NHWC) {256, 1, 1, 64}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 64}, // input size (NHWC) {64, 1, 1, 64}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 64}, // input size (NHWC) {64, 3, 3, 64}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 256}, // input size (NHWC) {64, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 256}, // input size (NHWC) {512, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 256}, // input size (NHWC) {128, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 128}, // input size (NHWC) {128, 3, 3, 128}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 128}, // input size (NHWC) {512, 1, 1, 128}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 512}, // input size (NHWC) {128, 1, 1, 512}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 512}, // input size (NHWC) {1024, 1, 1, 512}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 512}, // input size (NHWC) {256, 1, 1, 512}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 256}, // input size (NHWC) {256, 3, 3, 256}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 256}, // input size (NHWC) {1024, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 1024}, // input size (NHWC) {256, 1, 1, 1024}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 1024}, // input size (NHWC) {2048, 1, 1, 1024}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 1024}, // input size (NHWC) {512, 1, 1, 1024}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 7, 7, 512}, // input size (NHWC) {512, 3, 3, 512}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 7, 7, 512}, // input size (NHWC) {2048, 1, 1, 512}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 7, 7, 2048}, // input size (NHWC) {512, 1, 1, 2048}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); } }; //////////////////////////////////////////////////////////////////////////// /// Structure TestbedGroupConv2dProblemSizes initializes and holds group conv default and /// important network sizes //////////////////////////////////////////////////////////////////////////// struct TestbedGroupConv2dProblemSizes { // // Data members // int threadblock_n; int threadblock_k; int minimum_channel_size; Conv2dProblemVector default_single_group_sizes; Conv2dProblemVector default_multiple_group_sizes; // // Methods // /// Default ctor TestbedGroupConv2dProblemSizes( int threadblock_n_, int threadblock_k_, int minimum_channel_size_ = 64) : threadblock_n (threadblock_n_), threadblock_k (threadblock_k_), minimum_channel_size (minimum_channel_size_) { initialize_group_conv2d_default_sizes(); filter_all(); } /// Eliminates some illegal cases void filter_all() { Conv2dProblemVector *problems_vectors[] = { &default_single_group_sizes, &default_multiple_group_sizes }; for (Conv2dProblemVector *problems : problems_vectors) { Conv2dProblemVector filtered; for (cutlass::conv::Conv2dProblemSize const & problem : *problems) { if (!((problem.C / problem.groups) % minimum_channel_size)) { filtered.push_back(problem); } } *problems = filtered; } } // Add a few standard convolution problem sizes void initialize_group_conv2d_default_sizes() { //////////////////////////////////////////////////////////////////////////////////// // One group calculated by one or multiple CTAs: k_per_group % CTA::N = 0 // One CTA calculates a single group //////////////////////////////////////////////////////////////////////////////////// for (int cta_per_group_k = 1; cta_per_group_k < 4; ++cta_per_group_k) { // groups = 2, 3, 4 for (int groups = 2; groups < 5; ++groups) { int conv_k = cta_per_group_k * threadblock_n * groups; default_single_group_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, threadblock_k * 2 * groups}, // input size (NHWC) {conv_k, 3, 3, threadblock_k * 2}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) cutlass::conv::Mode::kCrossCorrelation, 1, // split_k_slices groups // groups )); } // loop groups } // loop cta_per_group_k // Partial gemm_k: k_per_group == CTA::N && channels_per_group < CTA::K default_single_group_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, threadblock_k}, // input size (NHWC) {threadblock_n * 2, 3, 3, threadblock_k / 2}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) cutlass::conv::Mode::kCrossCorrelation, 1, // split_k_slices 2 // groups )); // Larger problem sizes default_single_group_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 56, 56, 696}, // input size (NHWC) {768, 3, 3, 232}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) cutlass::conv::Mode::kCrossCorrelation, 1, // split_k_slices 3 // groups )); default_single_group_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 14, 14, 1392}, // input size (NHWC) {1536, 3, 3, 232}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) cutlass::conv::Mode::kCrossCorrelation, 1, // split_k_slices 3 // groups )); //////////////////////////////////////////////////////////////////////////////////// // One CTA calculate multiple groups: CTA::N % k_per_group = 0 //////////////////////////////////////////////////////////////////////////////////// // 2 groups per CTA default_multiple_group_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, threadblock_k * 4}, // input size (NHWC) {threadblock_n, 3, 3, threadblock_k * 2}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) cutlass::conv::Mode::kCrossCorrelation, 1, // split_k_slices 2 // groups )); // 2 groups per CTA and partial gemm_k default_multiple_group_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, threadblock_k}, // input size (NHWC) {threadblock_n, 3, 3, threadblock_k / 2}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) cutlass::conv::Mode::kCrossCorrelation, 1, // split_k_slices 2 // groups )); // 4 groups per CTA default_multiple_group_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, threadblock_k * 8}, // input size (NHWC) {threadblock_n / 2, 3, 3, threadblock_k * 2}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) cutlass::conv::Mode::kCrossCorrelation, 1, // split_k_slices 4 // groups )); // 4 groups per CTA and partial gemm_k default_multiple_group_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, threadblock_k * 2}, // input size (NHWC) {threadblock_n / 2, 3, 3, threadblock_k / 2}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) cutlass::conv::Mode::kCrossCorrelation, 1, // split_k_slices 4 // groups )); } }; } // namespace device } // namespace conv } // namespace test