/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "cutlass_unit_test.h" #include #include "../cooperative_gemm_common.hpp" using namespace cute; TEST(SM80_CuTe_Ampere, CooperativeGemm1_Half_MMA) { using value_type = cutlass::half_t; constexpr uint32_t m = 64; constexpr uint32_t n = 64; constexpr uint32_t k = 64; constexpr uint32_t thread_block_size = 128; using tiled_mma_t = TiledMMA< MMA_Atom, Layout> >; test_cooperative_gemm_col_major_layout(); } TEST(SM80_CuTe_Ampere, CooperativeGemm2_Double_MMA) { using value_type = double; constexpr uint32_t m = 64; constexpr uint32_t n = 64; constexpr uint32_t k = 64; constexpr uint32_t thread_block_size = 128; using tiled_mma_t = TiledMMA< MMA_Atom, Layout> >; test_cooperative_gemm_col_major_layout(); } TEST(SM80_CuTe_Ampere, CooperativeGemm3_Half_MMA_CustomSmemLayouts) { using value_type = cutlass::half_t; constexpr uint32_t m = 128; constexpr uint32_t n = 128; constexpr uint32_t k = 128; constexpr uint32_t thread_block_size = 128; using tiled_mma_t = TiledMMA< MMA_Atom, Layout>, // 2x2x1 thread group Tile<_32, _32, _16> // 32x32x16 MMA for LDSM, 1x2x1 value group` >; using smem_a_atom_layout_t = Layout, Stride< _1,_64>>; using smem_b_atom_layout_t = Layout, Stride<_32, _1>>; using smem_c_atom_layout_t = decltype(make_layout(make_shape(Int{}, Int{}))); test_cooperative_gemm_col_major_layout(); } TEST(SM80_CuTe_Ampere, CooperativeGemm4_Half_MMA_SwizzledSmemLayouts) { using value_type = cutlass::half_t; constexpr uint32_t m = 128; constexpr uint32_t n = 128; constexpr uint32_t k = 128; constexpr uint32_t thread_block_size = 128; using tiled_mma_t = TiledMMA< MMA_Atom, Layout>, // 2x2x1 thread group Tile<_32, _32, _16> // 32x32x16 MMA for LDSM, 1x2x1 value group` >; // RowMajor using smem_rowmajor_atom_layout_t = decltype( composition(Swizzle<3,3,3>{}, Layout, Stride<_64, _1>>{})); // ColMajor using smem_colmajor_atom_layout_t = decltype( composition(Swizzle<3,3,3>{}, Layout, Stride< _1,_64>>{})); using smem_a_atom_layout_t = smem_rowmajor_atom_layout_t; using smem_b_atom_layout_t = smem_colmajor_atom_layout_t; using smem_c_atom_layout_t = decltype(make_layout(make_shape(Int{}, Int{}), GenRowMajor{})); using gmem_a_layout_t = decltype(make_layout(make_shape(Int {}, Int {}), GenRowMajor{})); using gmem_b_layout_t = decltype(make_layout(make_shape(Int {}, Int {}), GenColMajor{})); using gmem_c_layout_t = decltype(make_layout(make_shape(Int {}, Int {}), GenRowMajor{})); using smem_a_atom_layout_t = smem_a_atom_layout_t; using smem_a_layout_t = decltype(tile_to_shape( smem_a_atom_layout_t{}, make_shape(shape<0>(gmem_a_layout_t{}), shape<1>(gmem_a_layout_t{}))) ); using smem_b_atom_layout_t = smem_b_atom_layout_t; using smem_b_layout_t = decltype(tile_to_shape( smem_b_atom_layout_t{}, make_shape(shape<0>(gmem_b_layout_t{}), shape<1>(gmem_b_layout_t{}))) ); using smem_c_atom_layout_t = smem_c_atom_layout_t; using smem_c_layout_t = decltype(tile_to_shape( smem_c_atom_layout_t{}, make_shape(shape<0>(gmem_c_layout_t{}), shape<1>(gmem_c_layout_t{}))) ); test_cooperative_gemm, // C thread_block_size, tiled_mma_t, 128, value_type, value_type, value_type>(); } TEST(SM80_CuTe_Ampere, CooperativeGemm5_Double_MMA_SwizzledSmemLayouts) { using value_type = double; constexpr uint32_t m = 128; constexpr uint32_t n = 64; constexpr uint32_t k = 16; constexpr uint32_t thread_block_size = 128; using tiled_mma_t = TiledMMA, // Atom Layout>, // Atom layout Tile, Stride<_2, _1>>, // 32x32x4 MMA with perm for load vectorization Layout, Stride<_2, _1>>, Underscore>>; using smem_a_atom_layout_t = decltype( composition(Swizzle<2,2,2>{}, Layout, Stride< _1,_16>>{})); // M, K using smem_b_atom_layout_t = decltype( composition(Swizzle<2,2,2>{}, Layout, Stride< _1,_16>>{})); // N, K using smem_c_atom_layout_t = decltype(make_layout(make_shape(Int{}, Int{}), GenRowMajor{})); using gmem_a_layout_t = decltype(make_layout(make_shape(Int {}, Int {}), GenRowMajor{})); using gmem_b_layout_t = decltype(make_layout(make_shape(Int {}, Int {}), GenColMajor{})); using gmem_c_layout_t = decltype(make_layout(make_shape(Int {}, Int {}), GenRowMajor{})); using smem_a_atom_layout_t = smem_a_atom_layout_t; using smem_a_layout_t = decltype(tile_to_shape( smem_a_atom_layout_t{}, make_shape(shape<0>(gmem_a_layout_t{}), shape<1>(gmem_a_layout_t{}))) ); using smem_b_atom_layout_t = smem_b_atom_layout_t; using smem_b_layout_t = decltype(tile_to_shape( smem_b_atom_layout_t{}, make_shape(shape<0>(gmem_b_layout_t{}), shape<1>(gmem_b_layout_t{}))) ); using smem_c_atom_layout_t = smem_c_atom_layout_t; using smem_c_layout_t = decltype(tile_to_shape( smem_c_atom_layout_t{}, make_shape(shape<0>(gmem_c_layout_t{}), shape<1>(gmem_c_layout_t{}))) ); test_cooperative_gemm, // A AutoVectorizingCopyWithAssumedAlignment<128>, // B AutoVectorizingCopyWithAssumedAlignment<128>, // C thread_block_size, tiled_mma_t, 128, value_type, value_type, value_type>(); } TEST(SM80_CuTe_Ampere, CooperativeGemm6_MixedPrecisionFP16FP32_MMA) { using TA = cutlass::half_t; using TB = cutlass::half_t; using TC = float; constexpr uint32_t m = 64; constexpr uint32_t n = 64; constexpr uint32_t k = 64; constexpr uint32_t thread_block_size = 128; using tiled_mma_t = TiledMMA< MMA_Atom, Layout> >; test_cooperative_gemm_col_major_layout(); } TEST(SM80_CuTe_Ampere, CooperativeGemm7_MixedPrecisionBF16FP32_MMA) { using TA = cutlass::bfloat16_t; using TB = cutlass::bfloat16_t; using TC = float; constexpr uint32_t m = 64; constexpr uint32_t n = 64; constexpr uint32_t k = 64; constexpr uint32_t thread_block_size = 128; using tiled_mma_t = TiledMMA< MMA_Atom, Layout> >; test_cooperative_gemm_col_major_layout(); } TEST(SM80_CuTe_Ampere, CooperativeGemm8_MixedPrecisionTF32FP32_MMA) { using TA = cutlass::tfloat32_t; using TB = cutlass::tfloat32_t; using TC = float; constexpr uint32_t m = 64; constexpr uint32_t n = 64; constexpr uint32_t k = 64; constexpr uint32_t thread_block_size = 128; using tiled_mma_t = TiledMMA< MMA_Atom, Layout> >; test_cooperative_gemm_col_major_layout(); }