/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/gemm/gemm.h" #include "cutlass/matrix_coord.h" #include "cutlass/semaphore.h" #include "../threadblock/dual_mma_multistage.h" #include "../threadblock/dual_epilogue.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename DualMma_, ///! Threadblock-scoped matrix multiply-accumulate typename Epilogue0_, ///! Epilogue typename Epilogue1_, ///! Epilogue typename OutputOp2_, ///! Epilogue typename ThreadblockSwizzle_, ///! Threadblock swizzling function bool SplitKSerial, ///! If true, code supporting split-K via serial reduction is enabled. bool StoreD0, bool StoreD1 > struct DualGemm { using DualMma = DualMma_; using Epilogue0 = Epilogue0_; using Epilogue1 = Epilogue1_; using OutputOp0 = typename Epilogue0::OutputOp; using OutputOp1 = typename Epilogue1::OutputOp; using OutputOp2 = OutputOp2_; using ThreadblockSwizzle = ThreadblockSwizzle_; static constexpr bool kStoreD0 = StoreD0; static constexpr bool kStoreD1 = StoreD1; using DualEpilogue = cutlass::epilogue::threadblock::DualEpilogue< typename Epilogue0::Shape, typename Epilogue0::WarpMmaOperator, Epilogue0::kPartitionsK, typename Epilogue0::OutputTileIterator, typename Epilogue0::AccumulatorFragmentIterator, typename Epilogue0::WarpTileIterator, typename Epilogue0::SharedLoadIterator, OutputOp0, OutputOp1, OutputOp2, typename Epilogue0::Padding, kStoreD0, kStoreD1, Epilogue0::kFragmentsPerIteration, true // IterationsUnroll >; static bool const kSplitKSerial = SplitKSerial; static_assert(!kSplitKSerial || (kStoreD0 && kStoreD1), "Split-K serial requires buffers for D0/D1 for reduction"); /// Warp count (concept: GemmShape) using WarpCount0 = typename DualMma::WarpCount; static int const kThreadCount = 32 * WarpCount0::kCount; /// Parameters structure struct Params { cutlass::gemm::GemmCoord problem_size; cutlass::gemm::GemmCoord grid_tiled_shape; int swizzle_log_tile; // Mma0 typename DualMma::IteratorA::Params params_A0; typename DualMma::IteratorA::TensorRef ref_A0; typename DualMma::IteratorB::Params params_B0; typename DualMma::IteratorB::TensorRef ref_B0; typename Epilogue0::OutputTileIterator::Params params_C0; typename Epilogue0::OutputTileIterator::TensorRef ref_C0; typename Epilogue0::OutputTileIterator::Params params_D0; typename Epilogue0::OutputTileIterator::TensorRef ref_D0; typename OutputOp0::Params output_op_0; // Mma1 typename DualMma::IteratorB::Params params_B1; typename DualMma::IteratorB::TensorRef ref_B1; typename Epilogue1::OutputTileIterator::Params params_C1; typename Epilogue1::OutputTileIterator::TensorRef ref_C1; typename Epilogue1::OutputTileIterator::Params params_D1; typename Epilogue1::OutputTileIterator::TensorRef ref_D1; typename OutputOp1::Params output_op_1; typename Epilogue1::OutputTileIterator::Params params_D2; typename Epilogue1::OutputTileIterator::TensorRef ref_D2; typename OutputOp2::Params output_op_2; int *semaphore; int gemm_k_size; // // Methods // CUTLASS_HOST_DEVICE Params(): swizzle_log_tile(0), semaphore(0), gemm_k_size(0) { } CUTLASS_HOST_DEVICE Params( cutlass::gemm::GemmCoord const & problem_size, cutlass::gemm::GemmCoord const & grid_tiled_shape, // Mma0: D0 = A @ B0 + C0 typename DualMma::IteratorA::TensorRef ref_A0, typename DualMma::IteratorB::TensorRef ref_B0, typename Epilogue0::OutputTileIterator::TensorRef ref_C0, typename Epilogue0::OutputTileIterator::TensorRef ref_D0, // Mma1: D1 = A @ B1 + C1 typename DualMma::IteratorB::TensorRef ref_B1, typename Epilogue1::OutputTileIterator::TensorRef ref_C1, typename Epilogue1::OutputTileIterator::TensorRef ref_D1, typename Epilogue1::OutputTileIterator::TensorRef ref_D2, typename OutputOp0::Params output_op_0 = typename OutputOp0::Params(), typename OutputOp1::Params output_op_1 = typename OutputOp1::Params(), typename OutputOp2::Params output_op_2 = typename OutputOp2::Params(), int *workspace = nullptr ): problem_size(problem_size), grid_tiled_shape(grid_tiled_shape), swizzle_log_tile(ThreadblockSwizzle().get_log_tile(grid_tiled_shape)), // Mma0 params_A0(ref_A0.layout()), ref_A0(ref_A0), params_B0(ref_B0.layout()), ref_B0(ref_B0), params_C0(ref_C0.layout()), ref_C0(ref_C0), params_D0(ref_D0.layout()), ref_D0(ref_D0), // Mma1 params_B1(ref_B1.layout()), ref_B1(ref_B1), params_C1(ref_C1.layout()), ref_C1(ref_C1), params_D1(ref_D1.layout()), ref_D1(ref_D1), params_D2(ref_D2.layout()), ref_D2(ref_D2), output_op_0(output_op_0), output_op_1(output_op_1), output_op_2(output_op_2) { int total_gemm_k_iterations = (problem_size.k() + DualMma::Shape::kK - 1) / DualMma::Shape::kK; int gemm_k_iterations = (total_gemm_k_iterations + grid_tiled_shape.k() - 1) / grid_tiled_shape.k(); gemm_k_size = gemm_k_iterations * DualMma::Shape::kK; semaphore = workspace; } }; /// Shared memory storage structure union SharedStorage { typename DualMma::SharedStorage main_loop; typename DualEpilogue::SharedStorage epilogue; }; // // Methods // CUTLASS_HOST_DEVICE DualGemm() { } /// Determines whether kernel satisfies alignment static Status can_implement( cutlass::gemm::GemmCoord const & problem_size, typename DualMma::IteratorA::TensorRef ref_A0, typename DualMma::IteratorB::TensorRef ref_B0, typename Epilogue0::OutputTileIterator::TensorRef ref_C0, typename Epilogue0::OutputTileIterator::TensorRef ref_D0, typename DualMma::IteratorB::TensorRef ref_B1, typename Epilogue1::OutputTileIterator::TensorRef ref_C1, typename Epilogue1::OutputTileIterator::TensorRef ref_D1, typename Epilogue1::OutputTileIterator::TensorRef ref_D2) { static int const kAlignmentA = DualMma::IteratorA::AccessType::kElements; static int const kAlignmentB = DualMma::IteratorB::AccessType::kElements; static int const kAlignmentC = Epilogue0::OutputTileIterator::kElementsPerAccess; if (!TensorRef_aligned(ref_A0, kAlignmentA)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_B0, kAlignmentB)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_C0, kAlignmentC)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_D0, kAlignmentC)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_B1, kAlignmentB)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_C1, kAlignmentC)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_D1, kAlignmentC)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_D2, kAlignmentC)) { return Status::kErrorMisalignedOperand; } return Status::kSuccess; } /// Executes one GEMM CUTLASS_DEVICE void operator()(Params const ¶ms, SharedStorage &shared_storage) { // Compute threadblock location ThreadblockSwizzle threadblock_swizzle; cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); // Early exit if CTA is out of range if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() || params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) { return; } // Compute initial location in logical coordinates cutlass::MatrixCoord tb_offset_A0{ threadblock_tile_offset.m() * DualMma::Shape::kM, threadblock_tile_offset.k() * params.gemm_k_size, }; cutlass::MatrixCoord tb_offset_B0{ threadblock_tile_offset.k() * params.gemm_k_size, threadblock_tile_offset.n() * DualMma::Shape::kN }; cutlass::MatrixCoord tb_offset_B1{ threadblock_tile_offset.k() * params.gemm_k_size, threadblock_tile_offset.n() * DualMma::Shape::kN }; // Problem size is a function of threadblock index in the K dimension int problem_size_k = (params.problem_size.k() < (threadblock_tile_offset.k() + 1) * params.gemm_k_size) ? params.problem_size.k() : (threadblock_tile_offset.k() + 1) * params.gemm_k_size; // Compute threadblock-scoped matrix multiply-add int gemm_k_iterations = (problem_size_k - tb_offset_A0.column() + DualMma::Shape::kK - 1) / DualMma::Shape::kK; // Compute position within threadblock int thread_idx = threadIdx.x; // Construct iterators to A and B operands typename DualMma::IteratorA iterator_A0( params.params_A0, params.ref_A0.data(), {params.problem_size.m(), problem_size_k}, thread_idx, tb_offset_A0); typename DualMma::IteratorB iterator_B0( params.params_B0, params.ref_B0.data(), {problem_size_k, params.problem_size.n()}, thread_idx, tb_offset_B0); typename DualMma::IteratorB iterator_B1( params.params_B1, params.ref_B1.data(), {problem_size_k, params.problem_size.n()}, thread_idx, tb_offset_B1); // Broadcast the warp_id computed by lane 0 to ensure dependent code // is compiled as warp-uniform. int warp_idx = __shfl_sync(0x1f, threadIdx.x / 32, 0); int lane_idx = threadIdx.x % 32; // // Main loop // // Construct thread-scoped matrix multiply typename DualMma::FragmentC accum0; typename DualMma::FragmentC accum1; accum0.clear(); accum1.clear(); DualMma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); if (!kSplitKSerial || gemm_k_iterations > 0) { // Compute threadblock-scoped matrix multiply-add mma(gemm_k_iterations, accum0, accum1, iterator_A0, iterator_B0, iterator_B1, accum0, accum1); } // // Epilogue // OutputOp0 output_op_0(params.output_op_0); OutputOp1 output_op_1(params.output_op_1); OutputOp2 output_op_2(params.output_op_2); // // Masked tile iterators constructed from members // threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); //assume identity swizzle MatrixCoord threadblock_offset( threadblock_tile_offset.m() * DualMma::Shape::kM, threadblock_tile_offset.n() * DualMma::Shape::kN ); int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m(); // Construct the semaphore. Semaphore semaphore(params.semaphore + block_idx, thread_idx); // If performing a reduction via split-K, fetch the initial synchronization if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { // Fetch the synchronization lock initially but do not block. semaphore.fetch(); // Indicate which position in a serial reduction the output operator is currently updating output_op_0.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k()); output_op_1.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k()); } // Tile iterator loading from source tensor. typename Epilogue0::OutputTileIterator iterator_C0( params.params_C0, params.ref_C0.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); typename Epilogue1::OutputTileIterator iterator_C1( params.params_C1, params.ref_C1.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); // Tile iterator writing to destination tensor. typename Epilogue0::OutputTileIterator iterator_D0( params.params_D0, params.ref_D0.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); typename Epilogue1::OutputTileIterator iterator_D1( params.params_D1, params.ref_D1.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); typename Epilogue1::OutputTileIterator iterator_D2( params.params_D2, params.ref_D2.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); DualEpilogue epilogue( shared_storage.epilogue, thread_idx, warp_idx, lane_idx); // Wait on the semaphore - this latency may have been covered by iterator construction if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { // For subsequent threadblocks, the source matrix is held in the 'D' tensor. if (threadblock_tile_offset.k()) { iterator_C0 = iterator_D0; iterator_C1 = iterator_D1; } semaphore.wait(threadblock_tile_offset.k()); __threadfence(); } // Execute the epilogue operator to update the destination tensor. typename Epilogue0::OutputTileIterator source_iters[] = { iterator_C0, iterator_C1 }; const bool writeToD2 = (!kSplitKSerial || params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1); epilogue( output_op_0, output_op_1, output_op_2, iterator_D0, iterator_D1, iterator_D2, accum0, accum1, source_iters, writeToD2 ); // // Release the semaphore // if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { int lock = 0; if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) { // The final threadblock resets the semaphore for subsequent grids. lock = 0; } else { // Otherwise, the semaphore is incremented lock = threadblock_tile_offset.k() + 1; } __threadfence(); semaphore.release(lock); } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace gemm } // namespace cutlass