/*************************************************************************************************** * Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* \file \brief Execution environment */ #pragma once #include #include #include #include "cutlass/library/library.h" #include "cutlass/util/distribution.h" #include "enumerated_types.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace profiler { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Device memory allocation class DeviceAllocation { private: /// Data type of contained elements library::NumericTypeID type_; /// Gets the stride between elements size_t batch_stride_; /// Capacity in elements of device allocation size_t capacity_; /// Pointer to device memory void *pointer_; /// Layout type ID library::LayoutTypeID layout_; /// Stride vector std::vector stride_; /// Extent vector std::vector extent_; /// Support allocating a 'batch' of non-overlapping tensors in contiguous memory int batch_count_; /// Buffer holding TensorRef instance to recently allocated memory std::vector tensor_ref_buffer_; public: // // Static member functions // /// Determines the number of bytes needed to represent this numeric type static size_t bytes(library::NumericTypeID type, size_t capacity); /// Returns the stride of a packed layout static std::vector get_packed_layout( library::LayoutTypeID layout_id, std::vector const &extent); /// returns the capacity needed static size_t construct_layout( void *bytes, library::LayoutTypeID layout_id, std::vector const &extent, std::vector &stride); /// Returns true if two blocks have exactly the same value static bool block_compare_equal( library::NumericTypeID numeric_type, void const *ptr_A, void const *ptr_B, size_t capacity); /// Returns true if two blocks have approximately the same value static bool block_compare_relatively_equal( library::NumericTypeID numeric_type, void const *ptr_A, void const *ptr_B, size_t capacity, double epsilon, double nonzero_floor); public: // // Methods // DeviceAllocation(); DeviceAllocation(library::NumericTypeID type, size_t capacity); DeviceAllocation( library::NumericTypeID type, library::LayoutTypeID layout_id, std::vector const &extent, std::vector const &stride = std::vector(), int batch_count = 1); ~DeviceAllocation(); DeviceAllocation &reset(); /// Allocates device memory of a given type and capacity DeviceAllocation &reset(library::NumericTypeID type, size_t capacity); /// Allocates memory for a given layout and tensor DeviceAllocation &reset( library::NumericTypeID type, library::LayoutTypeID layout_id, std::vector const &extent, std::vector const &stride = std::vector(), int batch_count = 1); /// Returns a buffer owning the tensor reference std::vector &tensor_ref() { return tensor_ref_buffer_; } bool good() const; /// Data type of contained elements library::NumericTypeID type() const; /// Pointer to start of device memory allocation void *data() const; /// Pointer to the first element of a batch void *batch_data(int batch_idx) const; /// Gets the layout type library::LayoutTypeID layout() const; /// Gets the stride vector std::vector const & stride() const; /// Gets the extent vector std::vector const & extent() const; /// Gets the number of adjacent tensors in memory int batch_count() const; /// Gets the stride (in units of elements) beteween items int64_t batch_stride() const; /// Gets the stride (in units of bytes) beteween items int64_t batch_stride_bytes() const; /// Capacity of allocation in number of elements size_t capacity() const; /// Capacity of allocation in bytes size_t bytes() const; /// Initializes a device allocation to a random distribution using cuRAND void initialize_random_device(int seed, Distribution dist); /// Initializes a host allocation to a random distribution using std::cout void initialize_random_host(int seed, Distribution dist); /// Initializes a device allocation to a random distribution using cuRAND void initialize_random_sparsemeta_device(int seed, int MetaSizeInBits); /// Initializes a host allocation to a random distribution using std::cout void initialize_random_sparsemeta_host(int seed, int MetaSizeInBits); /// Copies from an equivalent-sized tensor in device memory void copy_from_device(void const *ptr); /// Copies from an equivalent-sized tensor in device memory void copy_from_host(void const *ptr); /// Copies from an equivalent-sized tensor in device memory void copy_to_host(void *ptr); /// Writes a tensor to csv void write_tensor_csv(std::ostream &out); }; using DeviceAllocationList = std::list; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace profiler } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////