/*************************************************************************************************** * Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Implicit GEMM testbed sizes for Conv2d problem */ #pragma once #include "../../common/cutlass_unit_test.h" #include "cutlass/cutlass.h" #include "cutlass/aligned_buffer.h" #include "cutlass/numeric_types.h" #include "cutlass/layout/matrix.h" #include "cutlass/layout/tensor.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/core_io.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/conv/convolution.h" #include "cutlass/conv/conv2d_problem_size.h" #include "cutlass/conv/conv3d_problem_size.h" namespace test { namespace conv { namespace device { using Conv3dProblemVector = std::vector; //////////////////////////////////////////////////////////////////////////// /// Structure TestbedConv3dProblemSizes initializes and holds conv default and /// important network sizes //////////////////////////////////////////////////////////////////////////// struct TestbedConv3dProblemSizes { // // Data members // int minimum_channel_size; Conv3dProblemVector conv3d_default_sizes; Conv3dProblemVector conv3d_vnet_medical_sizes; // // Methods // /// Default ctor TestbedConv3dProblemSizes(int minimum_channel_size_ = 64): minimum_channel_size (minimum_channel_size_) { initialize_conv3d_default_sizes(); initialize_conv3d_vnet_medical_sizes(conv3d_vnet_medical_sizes, 1 /*batch-size*/); filter_all(); } /// Eliminates some illegal cases void filter_all() { Conv3dProblemVector *problems_vectors[] = { &conv3d_default_sizes, &conv3d_vnet_medical_sizes }; for (Conv3dProblemVector *problems : problems_vectors) { Conv3dProblemVector filtered; for (cutlass::conv::Conv3dProblemSize const & problem : *problems) { if (!(problem.C % minimum_channel_size)) { filtered.push_back(problem); } } *problems = filtered; } } // Add a few standard convolution problem sizes void initialize_conv3d_default_sizes() { conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize( {1, 1, 3, 3, minimum_channel_size}, // input size (NDHWC) {8, 1, 1, 1, minimum_channel_size}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize( {1, 1, 1, 8, minimum_channel_size}, // input size (NDHWC) {8, 1, 1, 3, minimum_channel_size}, // filter size (KTRSC) cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize( {1, 8, 8, 8, minimum_channel_size}, // input size (NDHWC) {8, 3, 3, 3, minimum_channel_size}, // filter size (KTRSC) cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize( {1, 16, 16, 16, minimum_channel_size}, // input size (NDHWC) {8, 3, 3, 3, minimum_channel_size}, // filter size (KTRSC) cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize( {1, 1, 15, 19, 160}, // input size (NDHWC) {224, 1, 3, 6, 160}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize( {1, 2, 1, 1, minimum_channel_size}, // input size (NDHWC) {8, 2, 1, 1, minimum_channel_size}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize( {1, 1, 7, 7, minimum_channel_size}, // input size (NDHWC) {16, 1, 3, 3, minimum_channel_size}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize( {1, 11, 15, 19, 64}, // input size (NDHWC) {32, 4, 3, 6, 64}, // filter size (KTRSC) cutlass::Coord<3>({2, 1, 3}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); } // Add vnet layers to unit testing sizes void initialize_conv3d_vnet_medical_sizes(Conv3dProblemVector &conv3d_problem_vector, int batch_size = 1) { conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 32, 32, 32, 16}, // input size (NDHWC) {32, 2, 2, 2, 16}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 16, 16, 16, 32}, // input size (NDHWC) {32, 3, 3, 3, 32}, // filter size (KTRSC) cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 16, 16, 16, 32}, // input size (NDHWC) {64, 2, 2, 2, 32}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 8, 8, 8, 64}, // input size (NDHWC) {64, 3, 3, 3, 64}, // filter size (KTRSC) cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 8, 8, 8, 64}, // input size (NDHWC) {128, 2, 2, 2, 64}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 4, 4, 4, 128}, // input size (NDHWC) {128, 3, 3, 3, 128}, // filter size (KTRSC) cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 8, 8, 8, 128}, // input size (NDHWC) {128, 3, 3, 3, 128}, // filter size (KTRSC) cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 16, 16, 16, 64}, // input size (NDHWC) {64, 3, 3, 3, 64}, // filter size (KTRSC) cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 32, 32, 32, 16}, // input size (NDHWC) {64, 2, 2, 2, 16}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize( {batch_size, 16, 16, 16, 32}, // input size (NDHWC) {128, 2, 2, 2, 32}, // filter size (KTRSC) cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w) cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w) cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w) )); } }; } // namespace device } // namespace conv } // namespace test