/*************************************************************************************************** * Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #include #include "../../common/cutlass_unit_test.h" #include "cutlass/aligned_buffer.h" #include "cutlass/gemm/warp/mma_simt.h" #include "cutlass/gemm/warp/mma_simt_policy.h" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/epilogue/threadblock/default_epilogue_simt.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "testbed.h" ///////////////////////////////////////////////////////////////////////////////////////////////// // // Real-valued half precision tests // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_32x64_32x64x8) { // // Define the warp-level matrix multiply // using Element = cutlass::half_t; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 1; using Shape = cutlass::gemm::GemmShape<32, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = cutlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_64x64_64x64x8) { // // Define the warp-level matrix multiply // using Element = cutlass::half_t; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = cutlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_64x128_64x64x8) { // // Define the warp-level matrix multiply // using Element = cutlass::half_t; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 1; using Shape = cutlass::gemm::GemmShape<64, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = cutlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_128x128_64x64x8) { // // Define the warp-level matrix multiply // using Element = cutlass::half_t; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = cutlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_128x256_64x64x8) { // // Define the warp-level matrix multiply // using Element = cutlass::half_t; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 1; using Shape = cutlass::gemm::GemmShape<128, 256, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = cutlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM60_Epilogue_threadblock_epilogue, simt_f16_256x128_64x64x8) { // // Define the warp-level matrix multiply // using Element = cutlass::half_t; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 1; using Shape = cutlass::gemm::GemmShape<256, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajor; using LayoutB = cutlass::layout::RowMajor; using LayoutC = cutlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = cutlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////////