/*************************************************************************************************** * Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #include #include "../../common/cutlass_unit_test.h" #include "cutlass/aligned_buffer.h" #include "cutlass/half.h" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/epilogue/thread/linear_combination_clamp.h" #include "cutlass/gemm/warp/default_mma_tensor_op.h" #include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "testbed.h" ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_64x64_64x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_64x64_32x32x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_128x128_64x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_128x64_64x32x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_64x128_32x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_32x128_32x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<32, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_128x32_64x32x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 32, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_256x128_64x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<256, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s4_tensor_op_128x256_64x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::int4b_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 32 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 256, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_64x64_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_64x64_32x3216) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 64 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_128x128_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_64x128_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_128x64_64x32x16) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 64 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_64x128_32x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_32x128_32x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<32, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, s8_tensor_op_128x32_64x32x16) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 64 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 32, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 16>; using Element = ElementOutput; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicandCrosswise< cutlass::sizeof_bits::value, 64>; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAddSaturate>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_64x64_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_128x128_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_128x256_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 256, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_256x128_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<256, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_32x32_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<32, 32, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_64x64_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_64x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, tensor_op_128x64_64x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Mixed precision tests // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x64_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x128_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x256_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 256, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_256x128_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<256, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_32x32_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<32, 32, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x64_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x64_64x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // F16 acumulation // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_64x64_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_128x128_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_128x256_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 256, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_256x128_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<256, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_32x32_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<32, 32, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_64x64_32x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_64x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, f16_tensor_op_128x64_64x32x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 64, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM80_Epilogue_threadblock_epilogue, f64_tensor_op_64x64_32x32x4) { // // Define the warp-level matrix multiply // using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; using Element = double; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM80_Epilogue_threadblock_epilogue, f64_tensor_op_128x64_64x32x4) { // // Define the warp-level matrix multiply // using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; using Element = double; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM80_Epilogue_threadblock_epilogue, f64_tensor_op_64x128_32x64x4) { // // Define the warp-level matrix multiply // using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; using Element = double; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM80_Epilogue_threadblock_epilogue, f64_tensor_op_128x128_32x64x4) { // // Define the warp-level matrix multiply // using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; using Element = double; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, vec1_mixed_f16_f32_tensor_op_128x128_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, vec1_mixed_f16_f32_tensor_op_128x256_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = cutlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 256, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM75_Epilogue_threadblock_epilogue, vec1_tensor_op_128x128_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 128, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_Epilogue_threadblock_epilogue, vec1_tensor_op_128x256_64x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = cutlass::gemm::GemmShape<128, 256, 8>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 8>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; using Element = cutlass::half_t; using ElementC = ElementAccumulator; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous< cutlass::sizeof_bits::value, 64>; using LayoutC = cutlass::layout::RowMajor; using WarpMmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } /////////////////////////////////////////////////////////////////////////////////////////////////