/*************************************************************************************************** * Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #include #include "../../common/cutlass_unit_test.h" #include "cutlass/aligned_buffer.h" #include "cutlass/half.h" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/gemm/warp/mma_tensor_op_sm70.h" #include "cutlass/epilogue/warp/fragment_iterator_volta_tensor_op.h" #include "cutlass/epilogue/threadblock/default_thread_map_volta_tensor_op.h" #include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "testbed.h" ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_64x64_32x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_128x64_64x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_64x128_32x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_64x64_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_64x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_128x64_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_128x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_128x256_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 256, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_volta_tensor_op_256x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<256, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Mixed: F32 accumulation // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_64x64_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_128x256_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 256, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_256x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<256, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_128x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_64x64_32x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_64x128_32x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f16_f32_volta_tensor_op_128x64_64x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // F32 accumulation, F32 output // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_64x64_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_64x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_128x64_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_128x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_128x256_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 256, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_256x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<256, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_64x64_32x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_128x64_64x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, f32_volta_tensor_op_64x128_32x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 128 / cutlass::sizeof_bits::value; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // This works TEST(SM70_Epilogue_threadblock_epilogue, vec8_f16_f32_volta_tensor_op_64x64_32x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 8; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } // This works TEST(SM70_Epilogue_threadblock_epilogue, vec2_f16_f32_volta_tensor_op_64x64_32x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 2; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // This fails TEST(SM70_Epilogue_threadblock_epilogue, vec1_f16_f32_volta_tensor_op_64x64_32x32x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 1; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_threadblock_epilogue, vec1_f32_volta_tensor_op_128x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = float; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 1; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, vec1_f16_f32_volta_tensor_op_128x128_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 128, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 1; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(SM70_Epilogue_threadblock_epilogue, vec1_f16_f32_volta_tensor_op_128x256_64x64x4) { // // Define the warp-level matrix multiply // using Shape = cutlass::gemm::GemmShape<128, 256, 4>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous::value>; using ElementOutput = cutlass::half_t; using ElementAccumulator = ElementC; using ElementCompute = ElementC; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using WarpMmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; int const kPartitionsK = 1; int const kElementsPerAccess = 1; using ThreadMap = typename cutlass::epilogue::threadblock::DefaultThreadMapVoltaTensorOp< Shape, WarpShape, kPartitionsK, ElementC, kElementsPerAccess, ElementAccumulator>::Type; // // Output operator // using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueVoltaTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } /////////////////////////////////////////////////////////////////////////////////////////////////