/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief High-level interface for running a grouped version of a CUTLASS kernel */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/fast_math.h" #include "cutlass/gemm/gemm.h" #include "cutlass/matrix_coord.h" #include "cutlass/complex.h" #include "cutlass/semaphore.h" #include "cutlass/layout/matrix.h" #include "cutlass/trace.h" #include "cutlass/gemm/kernel/gemm_transpose_operands.h" #include "cutlass/gemm/kernel/gemm_grouped_problem_visitor.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// /// High-level interface for running a grouped version of a CUTLASS kernel template < typename BaseKernel_ ///! Kernel-scoped matrix multiply-accumulate > struct GroupedKernel { public: using BaseKernel = BaseKernel_; using Epilogue = typename BaseKernel::Epilogue; /// Types that need to be exported to work properly with device::BaseGrouped using ElementA = typename BaseKernel::ElementA; using LayoutA = typename BaseKernel::LayoutA; using TensorRefA = TensorRef; static ComplexTransform const kTransformA = BaseKernel::kTransformA; static int const kAlignmentA = BaseKernel::kAlignmentA; using ElementB = typename BaseKernel::ElementB; using LayoutB = typename BaseKernel::LayoutB; using TensorRefB = TensorRef; static ComplexTransform const kTransformB = BaseKernel::kTransformB; static int const kAlignmentB = BaseKernel::kAlignmentB; using ElementC = typename BaseKernel::ElementC; using LayoutC = typename BaseKernel::LayoutC; using TensorRefC = TensorRef; using TensorRefD = TensorRef; static int const kAlignmentC = BaseKernel::kAlignmentC; using ElementAccumulator = typename BaseKernel::Mma::Policy::Operator::ElementC; using EpilogueOutputOp = typename BaseKernel::EpilogueOutputOp; using ThreadblockSwizzle = typename BaseKernel::ThreadblockSwizzle; using Operator = typename BaseKernel::Operator; using WarpMmaOperator = typename BaseKernel::Mma::Policy::Operator; using ArchMmaOperator = typename WarpMmaOperator::ArchMmaOperator; using MathOperator = typename WarpMmaOperator::MathOperator; using OperatorClass = typename WarpMmaOperator::OperatorClass; using ArchTag = typename WarpMmaOperator::ArchTag; using ThreadblockShape = typename BaseKernel::Mma::Shape; using WarpShape = typename BaseKernel::WarpShape; using InstructionShape = typename BaseKernel::InstructionShape; static int const kStages = BaseKernel::Mma::kStages; using Mma = typename BaseKernel::Mma; using Arguments = typename BaseKernel::GroupedArguments; using Params = typename BaseKernel::GroupedParams; using ProblemVisitor = typename ThreadblockSwizzle::ProblemVisitor; static int const kThreadCount = BaseKernel::kThreadCount; /// Shared memory storage structure struct SharedStorage { typename BaseKernel::SharedStorage kernel; // ProblemVisitor shared storage can't be overlapped with others typename ProblemVisitor::SharedStorage problem_visitor; }; public: // // Methods // CUTLASS_DEVICE GroupedKernel() { } /// Determines whether kernel satisfies alignment static Status can_implement(cutlass::gemm::GemmCoord const & problem_size) { return Status::kSuccess; } static Status can_implement(Arguments const &args) { return Status::kSuccess; } /// Executes a kernel-level GEMM in a loop CUTLASS_DEVICE void operator()(Params ¶ms, SharedStorage &shared_storage) { ThreadblockSwizzle swizzle(params.problem_visitor, shared_storage.problem_visitor, blockIdx.x); if (ProblemVisitor::kTransposed) { params.transpose(); } BaseKernel mma; // Outer 'persistent' loop to iterate over tiles while (swizzle.problem_visitor.next_tile()) { typename BaseKernel::Params mma_params = params.to_single_params(swizzle.problem_visitor); mma.run_with_swizzle(mma_params, shared_storage.kernel, swizzle); // Next tile swizzle.problem_visitor.advance(gridDim.x); } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace gemm } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////