/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #include "cutlass/arch/wmma.h" #ifdef CUTLASS_ARCH_WMMA_SM75_ENABLED #include "mma_pipelined_testbed.h" #include "cutlass/gemm/threadblock/default_mma_core_wmma.h" /// All tests use double-buffered (kStages=2) mma pipeline for the gemm mainloop /// Test name format: SM[arch]_gemm_threadblock_wmma_tensor_op_[alayout]_[blayout]_[clayout]_[atype].[threadblock_shape]_[warp_shape]_[instruction_shape] ///////////////////////////////////////////////////////////////////////// /// Integer (s8 and u8) WMMA threadblock level tests ///// ///////////////////////////////////////////////////////////////////////// #if defined(CUTLASS_ARCH_INTEGER_MATRIX_MULTIPLY_ENABLED) TEST(SM75_gemm_threadblock_wmma_tensor_op_row_col_row_s8, 64x64x32_64x64x32_16x16x16) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int32_t; using LayoutC = cutlass::layout::RowMajor; static const int kStages = 2; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 16, 16>; float alpha = 1.f; float beta = 0.0f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassWmmaTensorOp, kStages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } TEST(SM75_gemm_threadblock_wmma_tensor_op_row_col_row_s8, 64x64x64_64x64x64_16x16x16) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int32_t; using LayoutC = cutlass::layout::RowMajor; static const int kStages = 2; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 16, 16>; float alpha = 1.f; float beta = 0.0f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassWmmaTensorOp, kStages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } TEST(SM75_gemm_threadblock_wmma_tensor_op_col_row_row_s8, 64x64x32_64x64x32_16x16x16) { using ElementA = int8_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = int32_t; using LayoutC = cutlass::layout::RowMajor; static const int kStages = 2; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 16, 16>; float alpha = 1.f; float beta = 0.0f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassWmmaTensorOp, kStages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } TEST(SM75_gemm_threadblock_wmma_tensor_op_col_row_row_s8, 64x64x64_64x64x64_16x16x16) { using ElementA = int8_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = int32_t; using LayoutC = cutlass::layout::RowMajor; static const int kStages = 2; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 16, 16>; float alpha = 1.f; float beta = 0.0f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassWmmaTensorOp, kStages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } #endif //CUTLASS_ARCH_INTEGER_MATRIX_MULTIPLY_ENABLED //////////////////////////////////////////////////////////////////////// /// SUBBYTE (s4 and b1) WMMA threadblock level tests //// /////////////////////////////////////////////////////////////////////// #if defined(CUTLASS_SUBBYTE_INTEGER_MATRIX_MULTIPLY_ENABLED) TEST(SM75_gemm_threadblock_wmma_tensor_op_row_col_row_s4, 64x64x128_64x64x128_8x8x32) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int32_t; using LayoutC = cutlass::layout::RowMajor; static const int kStages = 2; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; float alpha = 1.f; float beta = 0.f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassWmmaTensorOp, kStages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } TEST(SM75_gemm_threadblock_wmma_tensor_op_row_col_col_s4, 64x64x64_64x64x64_8x8x32) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int32_t; using LayoutC = cutlass::layout::ColumnMajor; static const int kStages = 2; cutlass::gemm::GemmCoord problem_size(64, 64, 64); using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 32>; float alpha = 1.f; float beta = 0.f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassWmmaTensorOp, kStages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } TEST(SM75_gemm_threadblock_wmma_tensor_op_row_col_row_b1, 64x64x512_64x64x512_8x8x128) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int32_t; using LayoutC = cutlass::layout::RowMajor; static const int kStages = 2; cutlass::gemm::GemmCoord problem_size(64, 64, 2048); using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 512>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>; float alpha = 1.f; float beta = 0.f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassWmmaTensorOp, kStages, cutlass::arch::OpXorPopc>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } TEST(SM75_gemm_threadblock_wmma_tensor_op_row_col_col_b1, 64x64x512_64x64x512_8x8x128) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int32_t; using LayoutC = cutlass::layout::ColumnMajor; static const int kStages = 2; cutlass::gemm::GemmCoord problem_size(64, 64, 2048); using ThreadBlockShape = cutlass::gemm::GemmShape<64, 64, 512>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 128>; float alpha = 1.f; float beta = 0.f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadBlockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassWmmaTensorOp, kStages, cutlass::arch::OpXorPopc>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } #endif //CUTLASS_SUBBYTE_INTEGER_MATRIX_MULTIPLY_ENABLED #endif //CUTLASS_ARCH_WMMA_SM75_ENABLED