/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM with Hopper FP64 */ #include "../../common/cutlass_unit_test.h" #include "cutlass/aligned_buffer.h" #include "cutlass/half.h" #include "cutlass/gemm/warp/default_mma_tensor_op.h" #include "cutlass/core_io.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/gemm.h" #include "testbed.h" #if defined(CUTLASS_ARCH_MMA_SM90_F64_MMA_ENABLED) TEST(SM90_warp_gemm_tensor_op_congruous_f64, 16x16x4_16x16x4_16x8x4) { using Shape = cutlass::gemm::GemmShape<16, 16, 4>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>; using Element = double; using ElementC = double; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type; test::gemm::warp::Testbed >() .run(); } //////////////////////////////////////////////////////////////////////////////// TEST(SM90_warp_gemm_tensor_op_congruous_f64, 32x16x4_32x16x4_16x8x4) { using Shape = cutlass::gemm::GemmShape<32, 16, 4>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>; using Element = double; using ElementC = double; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type; test::gemm::warp::Testbed >() .run(); } //////////////////////////////////////////////////////////////////////////////// TEST(SM90_warp_gemm_tensor_op_congruous_f64, 32x32x4_32x32x4_16x8x4) { using Shape = cutlass::gemm::GemmShape<32, 32, 4>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>; using Element = double; using ElementC = double; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type; test::gemm::warp::Testbed >() .run(); } //////////////////////////////////////////////////////////////////////////////// TEST(SM90_warp_gemm_tensor_op_congruous_f64, 32x64x4_32x64x4_16x8x4) { using Shape = cutlass::gemm::GemmShape<32, 64, 4>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>; using Element = double; using ElementC = double; using LayoutA = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; using LayoutB = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type; test::gemm::warp::Testbed >() .run(); } //////////////////////////////////////////////////////////////////////////////// TEST(SM90_warp_gemm_tensor_op_crosswise_f64, 16x16x16_16x16x16_16x8x4) { using Shape = cutlass::gemm::GemmShape<16, 16, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>; using Element = double; using ElementC = double; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise; using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type; test::gemm::warp::Testbed >() .run(); } //////////////////////////////////////////////////////////////////////////////// TEST(SM90_warp_gemm_tensor_op_crosswise_f64, 32x32x16_32x32x16_16x8x4) { using Shape = cutlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>; using Element = double; using ElementC = double; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise; using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type; test::gemm::warp::Testbed >() .run(); } //////////////////////////////////////////////////////////////////////////////// TEST(SM90_warp_gemm_tensor_op_crosswise_f64, 64x32x16_64x32x16_16x8x4) { using Shape = cutlass::gemm::GemmShape<64, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>; using Element = double; using ElementC = double; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise; using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type; test::gemm::warp::Testbed >() .run(); } //////////////////////////////////////////////////////////////////////////////// TEST(SM90_warp_gemm_tensor_op_crosswise_f64, 32x64x16_32x64x16_16x8x4) { using Shape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 4>; using Element = double; using ElementC = double; using LayoutA = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise; using LayoutB = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise; using MmaTensorOp = typename cutlass::gemm::warp::DefaultMmaTensorOp< Shape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd>::Type; test::gemm::warp::Testbed >() .run(); } //////////////////////////////////////////////////////////////////////////////// #endif // if defined(CUTLASS_ARCH_MMA_SM90_F64_MMA_ENABLED)