/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "../common/cutlass_unit_test.h" #include "cutlass/util/device_rmsnorm.h" #include "cutlass/util/host_tensor.h" #include "cutlass/constants.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_compare.h" using ElementType = cutlass::half_t; using Layout = cutlass::layout::RowMajor; void rmsnorm_host(cutlass::MatrixCoord tensor_size, cutlass::TensorRef output, cutlass::TensorRef input, cutlass::TensorRef weight, float epsilon) { const int M = tensor_size.row(); const int N = tensor_size.column(); for (int m = 0; m < M; ++m) { float square_sum{0}; for (int n = 0; n < N; ++n) { float inp = static_cast(input.at({m, n})); square_sum += inp * inp; } float sq_mean = square_sum / (float)N; float sqrt_var = cutlass::fast_sqrt(sq_mean + epsilon); for (int n = 0; n < N; ++n) { float inp = static_cast(input.at({m, n})); float g = static_cast(weight.at({0, n})); float res_fp32 = inp / sqrt_var * g; output.at({m, n}) = ElementType(res_fp32); } } } void run_test(int M, int N) { cutlass::HostTensor input, output_ref, output, weight; input.reset({M, N}); output.reset({M, N}); output_ref.reset({M, N}); weight.reset({1, N}); const unsigned seed = 2022; cutlass::reference::host::TensorFillRandomUniform(input.host_view(), seed, ElementType(5), ElementType(-5), 0); cutlass::reference::host::TensorFillRandomUniform(weight.host_view(), seed, ElementType(5), ElementType(-5), 0); input.sync_device(); weight.sync_device(); rmsnorm_host({M, N}, output_ref.host_ref(), input.host_ref(), weight.host_ref(), (float)1e-5); cutlass::rmsnorm({M, N}, output.device_ref(), input.device_ref(), weight.device_ref(), NULL, (float)1e-5); output.sync_host(); float max_abs_diff = -1; float mean_abs_diff = 0; for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { auto diff = abs(static_cast(output_ref.at({m, n}) - output.at({m, n}))); mean_abs_diff += diff; max_abs_diff = max(max_abs_diff, diff); } } mean_abs_diff /= float(M * N); EXPECT_TRUE(max_abs_diff < 0.001f && mean_abs_diff < 0.001f) << "Max absolute difference : " << max_abs_diff << "\n" << "Mean absolute difference: " << mean_abs_diff; } TEST(RMSNorm, 16x1024) { run_test(16, 1024); } TEST(RMSNorm, 1x127) { run_test(1, 127); }