/*************************************************************************************************** * Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #if !defined(__CUDACC_RTC__) #include #endif #include #include #include #include #include namespace cute { ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// TMA_LOAD /////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// struct SM90_TMA_LOAD_OP : SM90_TMA_LOAD {}; // The executable SM90_TMA_LOAD with tma_desc and tma_mbar template struct Copy_Traits { using ThrID = Layout<_1>; // Map from (src-thr,src-val) to bit using SrcLayout = Layout>; // Map from (dst-thr,dst-val) to bit using DstLayout = Layout>; // Reference map from (thr,val) to bit using RefLayout = SrcLayout; // SM90_TMA_LOAD arguments TmaDescriptor const& tma_desc_; uint64_t& tma_load_mbar_; template CUTE_HOST_DEVICE constexpr void copy_unpack_(void const* const dst_ptr, Coord const& src_coord, seq) const { #if 0 print("THR (%d,%d,%d) BLK (%d,%d,%d)\n", threadIdx.x, threadIdx.y, threadIdx.z, blockIdx.x, blockIdx.y, blockIdx.z); print(" TMA Coord "); print(src_coord); print("\n"); print(" TMA Shape "); print(make_tuple(uint64_t(tma_desc_.size0_), uint64_t(tma_desc_.size1_), uint64_t(tma_desc_.size2_), uint64_t(tma_desc_.size3_))); print("\n"); #endif SM90_TMA_LOAD::copy(&tma_desc_, tma_load_mbar_, dst_ptr, get(src_coord)...); } // This is the copy_unpack dispatch for this Copy_Traits // Src needs to be a gmem tensor with TmaCoordIterator .data() // Dst needs to be a smem tensor template CUTE_HOST_DEVICE friend constexpr void copy_unpack(Copy_Traits const& traits, Tensor const& src, Tensor & dst) { //static_assert(is_gmem::value, "Expected gmem src for SM90_TMA_LOAD"); // TMA spoofed src tensor static_assert(is_smem::value, "Expected smem dst for SM90_TMA_LOAD"); traits.copy_unpack_(dst.data().get(), src.data().coord_, tuple_seq{}); } }; // The non-executable SM90_TMA_LOAD with tma_desc and no tma_mbar // Use .with(tma_mbar) to construct an executable version template struct Copy_Traits { using ThrID = Layout<_1>; // Map from (src-thr,src-val) to bit using SrcLayout = Layout>; // Map from (dst-thr,dst-val) to bit using DstLayout = Layout>; // Reference map from (thr,val) to bit using RefLayout = SrcLayout; // SM90_TMA_LOAD arguments TmaDescriptor tma_desc_; GmemStrides g_stride_; // Return TmaDescriptor/TensorMap CUTE_HOST_DEVICE constexpr TmaDescriptor const* get_tma_descriptor() const { return &tma_desc_; } // Construct an executable SM90_TMA_LOAD with tma_mbar CUTE_HOST_DEVICE constexpr Copy_Traits with(uint64_t& tma_mbar, uint16_t const& multicast_mask = 0) const { // We accept multicast_mask here to keep the API for both atoms consistent // assert(multicast_mask == 0); (void) multicast_mask; return {tma_desc_, tma_mbar}; } // Generate the TMA coord tensor template CUTE_HOST_DEVICE constexpr auto get_tma_tensor(GShape const& g_shape) const { static_assert(is_congruent::value); constexpr int tma_rank = decltype(cute::min(rank(flatten(g_stride_)), Int<5>{}))::value; return make_tensor(ArithmeticTupleIterator(as_arithmetic_tuple(repeat(Int<0>{}))), g_shape, g_stride_); } // Don't try to execute a copy with SM90_TMA_LOAD before calling .with() template CUTE_HOST_DEVICE friend constexpr void copy_unpack(Copy_Traits const& traits, Tensor const& src, Tensor & dst) = delete; }; ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// TMA_LOAD_MULTICAST ///////////////////////////// ////////////////////////////////////////////////////////////////////////////// struct SM90_TMA_LOAD_MULTICAST_OP : SM90_TMA_LOAD_MULTICAST {}; template struct Copy_Traits { using ThrID = Layout<_1>; // Map from (src-thr,src-val) to bit using SrcLayout = Layout>; // Map from (dst-thr,dst-val) to bit using DstLayout = Layout>; // Reference map from (thr,val) to bit using RefLayout = SrcLayout; // SM90_TMA_LOAD_MULTICAST arguments TmaDescriptor const& tma_desc_; uint64_t& tma_load_mbar_; uint16_t const& multicast_mask_; template CUTE_HOST_DEVICE constexpr void copy_unpack_(void const* const dst_ptr, Coord const& src_coord, seq) const { #if 0 print("THR (%d,%d,%d) BLK (%d,%d,%d)\n", threadIdx.x, threadIdx.y, threadIdx.z, blockIdx.x, blockIdx.y, blockIdx.z); print(" TMA Coord "); print(src_coord); print("\n"); print(" TMA Shape "); print(make_tuple(uint64_t(tma_desc_.size0_), uint64_t(tma_desc_.size1_), uint64_t(tma_desc_.size2_), uint64_t(tma_desc_.size3_))); print("\n"); #endif SM90_TMA_LOAD_MULTICAST::copy(&tma_desc_, tma_load_mbar_, multicast_mask_, dst_ptr, get(src_coord)...); } template CUTE_HOST_DEVICE friend constexpr void copy_unpack(Copy_Traits const& traits, Tensor const& src, Tensor & dst) { //static_assert(is_gmem::value, "Expected gmem src for SM90_TMA_LOAD"); // TMA spoofed src tensor static_assert(is_smem::value, "Expected smem dst for SM90_TMA_LOAD_MULTICAST"); traits.copy_unpack_(dst.data().get(), src.data().coord_, tuple_seq{}); } }; template struct Copy_Traits { using ThrID = Layout<_1>; // Map from (src-thr,src-val) to bit using SrcLayout = Layout>; // Map from (dst-thr,dst-val) to bit using DstLayout = Layout>; // Reference map from (thr,val) to bit using RefLayout = SrcLayout; // SM90_TMA_LOAD_MULTICAST arguments TmaDescriptor tma_desc_; GmemStrides g_stride_; // Return TmaDescriptor/TensorMap CUTE_HOST_DEVICE constexpr TmaDescriptor const* get_tma_descriptor() const { return &tma_desc_; } // Construct an executable SM90_TMA_LOAD_MULTICAST with tma_mbar CUTE_HOST_DEVICE constexpr Copy_Traits with(uint64_t& tma_load_mbar, uint16_t const& multicast_mask) const { return {tma_desc_, tma_load_mbar, multicast_mask}; } // Generate the TMA coord tensor template CUTE_HOST_DEVICE constexpr auto get_tma_tensor(GShape const& g_shape) const { static_assert(is_congruent::value); constexpr int tma_rank = decltype(cute::min(rank(flatten(g_stride_)), Int<5>{}))::value; return make_tensor(ArithmeticTupleIterator(as_arithmetic_tuple(repeat(Int<0>{}))), g_shape, g_stride_); } // Don't try to execute a copy with SM90_TMA_LOAD_MULTICAST before calling .with() template CUTE_HOST_DEVICE friend constexpr void copy_unpack(Copy_Traits const& traits, Tensor const& src, Tensor & dst) = delete; }; ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// TMA_STORE ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // The executable SM90_TMA_STORE with tma_desc template struct Copy_Traits { using ThrID = Layout<_1>; // Map from (src-thr,src-val) to bit using SrcLayout = Layout>; // Map from (dst-thr,dst-val) to bit using DstLayout = Layout>; // Reference map from (thr,val) to bit using RefLayout = SrcLayout; // SM90_TMA_STORE arguments TmaDescriptor tma_desc_; GmemStrides g_stride_; // Return TmaDescriptor/TensorMap CUTE_HOST_DEVICE constexpr TmaDescriptor const* get_tma_descriptor() const { return &tma_desc_; } // Generate the TMA coord tensor template CUTE_HOST_DEVICE constexpr auto get_tma_tensor(GShape const& g_shape) const { static_assert(is_congruent::value); constexpr int tma_rank = decltype(cute::min(rank(flatten(g_stride_)), Int<5>{}))::value; return make_tensor(ArithmeticTupleIterator(as_arithmetic_tuple(repeat(Int<0>{}))), g_shape, g_stride_); } template CUTE_HOST_DEVICE constexpr void copy_unpack_(void const* const src_ptr, Coord const& dst_coord, seq) const { #if 0 print("THR (%d,%d,%d) BLK (%d,%d,%d)\n", threadIdx.x, threadIdx.y, threadIdx.z, blockIdx.x, blockIdx.y, blockIdx.z); print(" TMA Coord "); print(dst_coord); print("\n"); print(" TMA Shape "); print(make_tuple(uint64_t(tma_desc_.size0_), uint64_t(tma_desc_.size1_), uint64_t(tma_desc_.size2_), uint64_t(tma_desc_.size3_))); print("\n"); #endif SM90_TMA_STORE::copy(&tma_desc_, src_ptr, get(dst_coord)...); } // This is the copy_unpack dispatch for this Copy_Traits // Src needs to be a smem tensor // Dst needs to be a gmem tensor with TmaCoordIterator .data() template CUTE_HOST_DEVICE friend constexpr void copy_unpack(Copy_Traits const& traits, Tensor const& src, Tensor & dst) { static_assert(is_smem::value, "Expected smem src for SM90_TMA_STORE"); //static_assert(is_gmem::value, "Expected gmem dst for SM90_TMA_STORE"); // TMA spoofed src tensor traits.copy_unpack_(src.data().get(), dst.data().coord_, tuple_seq{}); } }; ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// BULK COPY ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// template struct Copy_Traits { static_assert(int32_t(NumBits::value / 8) % 16 == 0, "Bulk Copy requires copy vector size align to 16B."); using ThrID = Layout<_1>; // Map from (src-thr,src-val) to bit using SrcLayout = Layout>; // Map from (dst-thr,dst-val) to bit using DstLayout = Layout>; // Reference map from (thr,val) to bit using RefLayout = SrcLayout; // SM90_BULK_COPY_G2S arguments // 0: uint64_t* bulk_load_memory_barrier cute::tuple bulk_load_mbar_; template CUTE_HOST_DEVICE friend constexpr void copy_unpack(Copy_Traits const& traits, Tensor const& src, Tensor & dst) { static_assert(is_same, cute::tuple>::value, "Extra arguments not set. Set .with() before use."); static_assert(is_gmem::value, "Expected gmem src for SM90_BULK_COPY_G2S"); static_assert(is_smem::value, "Expected smem dst for SM90_BULK_COPY_G2S"); SM90_BULK_COPY_G2S::copy(src.data().get(), *get<0>(traits.bulk_load_mbar_), dst.data().get(), int32_t(NumBits::value / 8)); } // Record the memory barrier for the instruction CUTE_HOST_DEVICE constexpr Copy_Traits with(uint64_t& bulk_mbar) const { return {{&bulk_mbar}}; } }; template struct Copy_Traits { static_assert(int32_t(NumBits::value / 8) % 16 == 0, "Bulk Copy requires copy vector size align to 16B."); using ThrID = Layout<_1>; // Map from (src-thr,src-val) to bit using SrcLayout = Layout>; // Map from (dst-thr,dst-val) to bit using DstLayout = Layout>; // Reference map from (thr,val) to bit using RefLayout = SrcLayout; template CUTE_HOST_DEVICE friend constexpr void copy_unpack(Copy_Traits const& traits, Tensor const& src, Tensor & dst) { static_assert(is_smem::value, "Expected smem src for SM90_BULK_COPY_S2G"); static_assert(is_gmem::value, "Expected gmem dst for SM90_BULK_COPY_S2G"); SM90_BULK_COPY_S2G::copy(src.data().get(), dst.data().get(), int32_t(NumBits::value / 8)); } }; // // Placeholder for the bulk copy algorithm's default, auto-vectorizing behavior // template struct Copy_Traits { // Logical thread id to thread idx (one-thread) using ThrID = Layout<_1>; // Map from (src-thr,src-val) to bit using SrcLayout = Layout, Stride<_0,_0>>; // Map from (dst-thr,dst-val) to bit using DstLayout = Layout, Stride<_0,_0>>; // Reference map from (thr,val) to bit using RefLayout = SrcLayout; // SM90_UBULK_COPY arguments // 0: uint64_t* bulk_load_memory_barrier [if this is a BULK_LOAD_G2S] cute::tuple opargs_; // Record the memory barrier for the instruction CUTE_HOST_DEVICE constexpr Copy_Traits with(uint64_t& bulk_mbar) const { return {{&bulk_mbar}}; } }; // // MAKE_TMA_COPY and related // namespace detail { template auto get_swizzle_portion(ComposedLayout,Offset,SLayout>) { return Swizzle{}; } template auto get_swizzle_portion(Layout) { return Swizzle<0,4,3>{}; } template auto get_nonswizzle_portion(ComposedLayout,Offset,SLayout> const& slayout) { return slayout.layout_fn(); } template auto get_nonswizzle_portion(Layout const& slayout) { return slayout; } template TMA::SmemSwizzleBits get_tma_swizzle_bits(Swizzle) { if constexpr (M == 4) { switch (B) { default: static_assert(0 <= B && B <= 3, "Expected B = 0,1,2, or 3 when M == 4. Unsupported layout swizzle."); case 3: return TMA::SmemSwizzleBits::B128; case 2: return TMA::SmemSwizzleBits::B64; case 1: return TMA::SmemSwizzleBits::B32; case 0: return TMA::SmemSwizzleBits::DISABLE; } } else { static_assert(M < 0, "Unsupported layout swizzle."); } } template TMA::SmemSwizzleBits get_tma_swizzle_bits(Layout const& layout) { return get_tma_swizzle_bits(get_swizzle_portion(layout)); } #if !defined(__CUDACC_RTC__) // Use a smem2gmode map to read through the GMEM tensor // and construct a TMA Descriptor for the resulting instruction template CUTE_HOST auto make_tma_copy_desc(Tensor const& gtensor, // The original GMEM Tensor Layout const& smem_inv, // smem_idx to flat gmode Swizzle const& swizzle) // Swizzle fn on smem_idx { using T = typename GEngine::value_type; auto flat_glayout = flatten(gtensor.layout()); CUTE_STATIC_ASSERT_V(rank(flat_glayout) == rank(smem_inv)); constexpr int rank_smem_inv = decltype(rank(smem_inv))::value; auto tma_multimode = rank(flat_glayout) > Int<5>{}; constexpr uint32_t tma_dim = cute::min(rank(flat_glayout), 5);; // // TMA gmem desc info // void* gmem_address = (void*) gtensor.data(); cute::array gmem_prob_shape = {1,1,1,1,1}; cute::array gmem_prob_stride = {0,0,0,0,0}; for_each(make_seq{}, [&](auto i) { auto e = stride(smem_inv); // For g++-7.5, let it deduce e rather than fuse with below constexpr int j = decltype(e.mode())::value; constexpr int tma_i = i < 5 ? i : 4; // Problem stride uint64_t stride_j = stride(flat_glayout) * sizeof(T); uint64_t old_stride = gmem_prob_stride[tma_i]; gmem_prob_stride[tma_i] = gcd(gmem_prob_stride[tma_i], stride_j); // Problem shape uint64_t shape_j = shape(flat_glayout); if (gmem_prob_stride[tma_i] != 0) { // We're "resetting" this TMA mode and using it as a "multimode" // Recurrence: g_shape = (s_i - 1) * (d_i / gcd_j d_j) + 1 gmem_prob_shape[tma_i] = (gmem_prob_shape[tma_i]-1) * (old_stride / gmem_prob_stride[tma_i]) + (shape_j-1) * (stride_j / gmem_prob_stride[tma_i]) + 1; } else { gmem_prob_shape[tma_i] = shape_j; } }); assert((reinterpret_cast(gmem_address) & 0b1111) == 0); // Address must be 16B-aligned assert(gmem_prob_shape[0] >= (uint64_t(1))); // Size must be min 1 assert(gmem_prob_shape[0] <= (uint64_t(1) << 32)); // Size must be max 2^32 assert(gmem_prob_shape[1] >= (uint64_t(1))); // Size must be min 1 assert(gmem_prob_shape[1] <= (uint64_t(1) << 32)); // Size must be max 2^32 assert(gmem_prob_shape[2] >= (uint64_t(1))); // Size must be min 1 assert(gmem_prob_shape[2] <= (uint64_t(1) << 32)); // Size must be max 2^32 assert(gmem_prob_shape[3] >= (uint64_t(1))); // Size must be min 1 assert(gmem_prob_shape[3] <= (uint64_t(1) << 32)); // Size must be max 2^32 assert(gmem_prob_shape[4] >= (uint64_t(1))); // Size must be min 1 assert(gmem_prob_shape[4] <= (uint64_t(1) << 32)); // Size must be max 2^32 assert((gmem_prob_stride[0]) == sizeof(T)); // First stride is implicitly 1 assert((gmem_prob_stride[1]) < (uint64_t(1) << 40)); // Stride must be max 2^40 assert((gmem_prob_stride[1] & 0b1111) == 0); // Stride must be multiple of 16B (128b) assert((gmem_prob_stride[2]) < (uint64_t(1) << 40)); // Stride must be max 2^40 assert((gmem_prob_stride[2] & 0b1111) == 0); // Stride must be multiple of 16B (128b) assert((gmem_prob_stride[3]) < (uint64_t(1) << 40)); // Stride must be max 2^40 assert((gmem_prob_stride[3] & 0b1111) == 0); // Stride must be multiple of 16B (128b) assert((gmem_prob_stride[4]) < (uint64_t(1) << 40)); // Stride must be max 2^40 assert((gmem_prob_stride[4] & 0b1111) == 0); // Stride must be multiple of 16B (128b) // // TMA smem desc info // cute::array smem_box_shape = {1,1,1,1,1}; cute::array smem_box_stride = {1,1,1,1,1}; for_each(make_seq{}, [&](auto i) { uint32_t shape_i = shape(smem_inv); constexpr int tma_i = i < 5 ? i : 4; if (tma_multimode && tma_i == 4) { // We're "reusing" this TMA mode and using it as a "multimode" smem_box_shape[tma_i] = 1; } else { smem_box_shape[tma_i] = shape_i; } }); assert(smem_box_shape[0] >= (uint64_t(1))); // Size must be min 1 assert(smem_box_shape[0] <= (uint64_t(1) << 8)); // Size must be max 2^8 assert(smem_box_shape[0] >= (uint64_t(1))); // Size must be min 1 assert(smem_box_shape[0] <= (uint64_t(1) << 8)); // Size must be max 2^8 assert(smem_box_shape[0] >= (uint64_t(1))); // Size must be min 1 assert(smem_box_shape[0] <= (uint64_t(1) << 8)); // Size must be max 2^8 assert(smem_box_shape[0] >= (uint64_t(1))); // Size must be min 1 assert(smem_box_shape[0] <= (uint64_t(1) << 8)); // Size must be max 2^8 assert(smem_box_stride[0] >= (uint32_t(1))); // Stride must be min 1 assert(smem_box_stride[0] <= (uint32_t(8))); // Stride must be max 2^3 assert(smem_box_stride[1] >= (uint32_t(1))); // Stride must be min 1 assert(smem_box_stride[1] <= (uint32_t(8))); // Stride must be max 2^3 assert(smem_box_stride[2] >= (uint32_t(1))); // Stride must be min 1 assert(smem_box_stride[2] <= (uint32_t(8))); // Stride must be max 2^3 assert(smem_box_stride[3] >= (uint32_t(1))); // Stride must be min 1 assert(smem_box_stride[3] <= (uint32_t(8))); // Stride must be max 2^3 assert(smem_box_stride[4] >= (uint32_t(1))); // Stride must be min 1 assert(smem_box_stride[4] <= (uint32_t(8))); // Stride must be max 2^3 // // Construct the descriptor // TmaDescriptor tma_desc = {0}; // // TMA general info // #if (__CUDACC_VER_MAJOR__ >= 12) CUtensorMapDataType tma_format = TMA::to_CUtensorMapDataType(); CUtensorMapInterleave tma_interleave = CU_TENSOR_MAP_INTERLEAVE_NONE; CUtensorMapL2promotion tma_l2Promotion = CU_TENSOR_MAP_L2_PROMOTION_NONE; CUtensorMapFloatOOBfill tma_oobFill = CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE; // TMA smem swizzle type CUtensorMapSwizzle smem_swizzle = TMA::to_CUtensorMapSwizzle(get_tma_swizzle_bits(swizzle)); CUresult result = cuTensorMapEncodeTiled( &tma_desc, tma_format, tma_dim, gmem_address, gmem_prob_shape.data(), gmem_prob_stride.data() + 1, // gmem_prob_stride[0] implicitly 1 smem_box_shape.data(), smem_box_stride.data(), tma_interleave, smem_swizzle, tma_l2Promotion, tma_oobFill); if (result != CUDA_SUCCESS) { std::cerr << "TMA Desc Addr: " << &tma_desc << "\nformat " << tma_format << "\ndim " << tma_dim << "\ngmem_address " << gmem_address << "\nglobalDim " << gmem_prob_shape << "\nglobalStrides " << gmem_prob_stride << "\nboxDim " << smem_box_shape << "\nelementStrides " << smem_box_stride << "\ninterleave " << tma_interleave << "\nswizzle " << smem_swizzle << "\nl2Promotion " << tma_l2Promotion << "\noobFill " << tma_oobFill << std::endl; std::cerr << "Error: Failed to initialize the TMA descriptor " << result << std::endl; assert(false); } #endif // (__CUDACC_VER_MAJOR__ >= 12) // Finally, get the inverse permutation of the E bases for the mocked gmem stride auto gmem_stride_bases_flat = transform(make_seq{}, [&](auto i) { auto k = find(stride(smem_inv), E{}); // For gcc 7.5 -- avoid 'if constexpr' int32_t tma_coord_stride = int32_t(stride(flat_glayout) * sizeof(T) / (gmem_prob_stride[4] != 0 ? gmem_prob_stride[4] : 16)); return conditional_return(tma_multimode && (k >= Int<4>{}), E<4>{} * tma_coord_stride, // The 4th TMA mode is the multimode, use int32_t coord stride E{}); }); // Give that the profile of gtensor and fold it // NOTE: This is the only reason we want the original gtensor shape rather than the more intuitive flattened shape auto gmem_stride_bases = stride(composition(make_layout(repeat_like(shape(flat_glayout), Int<2>{}), gmem_stride_bases_flat), make_layout(repeat_like(shape(gtensor), Int<2>{})))); return make_tuple(tma_desc, gmem_stride_bases); } template CUTE_HOST auto make_tma_copy_tiled(CopyOp, Tensor const& gtensor, // Full GMEM Tensor SLayout const& slayout, // CTA Tile of SMEM Layout const& cta_t_map, // T: CTA thr idx -> logical TMA tid Layout const& cta_v_map) // V: CTA val idx -> gmem coord { // // TMA parameter checking // CUTE_STATIC_ASSERT_V(product_each(shape(slayout)) == product_each(shape(cta_v_map)), "TMA requires CTA_Tile and SLayout top-level shape equivalence."); CUTE_STATIC_ASSERT_V(size(slayout) % cosize(cta_t_map) == Int<0>{}, "Number of active CTAs in TMA must divide domain size of slayout."); // // TMA slayout manipulation // auto flat_glayout = flatten(gtensor.layout()); // Invert the smem to get the largest contiguous vector in the smem layout auto inv_smem_layout = right_inverse(get_nonswizzle_portion(slayout)); // trunc_smem_idx -> trunc_smem_coord // Map from smem idx to a gmem mode auto sidx_to_gmode = coalesce(composition(cta_v_map, inv_smem_layout)); // Truncate any incompatibilities auto smem_rank = find_if(stride(sidx_to_gmode), [](auto e) { auto v = basis_value(e); return not is_constant<1,decltype(v)>{}; }); static_assert(smem_rank > 0, "Could not find a common smem-gmem vectorization for TMA. Do they have a common majorness?"); // TMA uses a maximum of 5 modes // If the gtensor has more than 5 modes, we need to reserve the last TMA-mode as a "multimode" constexpr int smem_tma_rank = cute::min(int(smem_rank), (rank(flat_glayout) > Int<5>{} ? 4 : 5)); // Keep only the static-1 basis modes into gmem auto sidx_to_gmode_trunc = take<0,smem_tma_rank>(sidx_to_gmode); // Split according to the portion each multicast CTA will be responsible for auto sidx_to_gmode_vt = logical_divide(sidx_to_gmode_trunc, shape_div(size(sidx_to_gmode_trunc), cosize(cta_t_map))); #if 0 print("g_layout : "); print(gtensor.layout()); print("\n"); print("s_layout : "); print(slayout); print("\n"); print("cta_t_map : "); print(cta_t_map); print("\n"); print("cta_v_map : "); print(cta_v_map); print("\n"); print("inv_smem : "); print(inv_smem_layout); print("\n"); print("sidx_to_gmode : "); print(sidx_to_gmode); print("\n"); print("sidx_to_gmode_trunc : "); print(sidx_to_gmode_trunc); print("\n"); print("sidx_to_gmode_vt : "); print(sidx_to_gmode_vt); print("\n"); #endif // // TMA gtensor manipulation // // Generate a TupleBasis for the gtensor auto flat_gbasis = make_basis_like(shape(flat_glayout)); // Fold the flat_gbasis into the glayout auto glayout_basis = make_layout(shape(gtensor), stride(composition(make_layout(repeat_like(shape(flat_glayout), Int<2>{}), flat_gbasis), make_layout(repeat_like(shape(gtensor), Int<2>{}))))); // Tile the modes of gtensor with the truncated cta_v_map o inv_smem_layout_trunc auto tma_layout_v_trunc = flatten(composition(glayout_basis, layout<0>(sidx_to_gmode_vt))); // Append any missing basis on the end as size-1 modes b/c they got truncated // NOTE This is essentially ArithmeticTuple complement... auto missing_basis = fold(stride(tma_layout_v_trunc), flat_gbasis, [](auto init, auto e) { auto k = find(init, e); return remove(init); }); // The appended map from truncated smem codomain to gmem mode: trunc_smem_idx -> gmem_mode auto tma_layout_v = make_layout(flatten(cute::make_tuple(tma_layout_v_trunc.shape(), repeat(Int<1>{}))), flatten(cute::make_tuple(tma_layout_v_trunc.stride(), missing_basis))); #if 0 print("flat_gbasis : "); print(flat_gbasis); print("\n"); print("missing_b : "); print(missing_basis); print("\n"); print("tma_layout_v : "); print(tma_layout_v); print("\n"); #endif // // Construct the TMA Desc and GMEM mode ordering // auto [tma_desc, gmem_stride_bases] = detail::make_tma_copy_desc(gtensor, tma_layout_v, get_swizzle_portion(slayout)); // // Construct the Copy_Traits // using T = typename GEngine::value_type; constexpr int num_bits = decltype(size<0>(sidx_to_gmode_vt))::value * sizeof(T) * 8; using Traits = Copy_Traits, decltype(gmem_stride_bases)>; #if 0 print("num_bits : "); print(num_bits); print("\n"); print("g_stride_bases: "); print(gmem_stride_bases); print("\n"); #endif Traits tma_traits{tma_desc, gmem_stride_bases}; // // Construct the TiledCopy // auto cta_tiler = product_each(shape(cta_v_map)); // (CTA V, CTA T) -> smem_coord auto layout_vt = composition(inv_smem_layout, make_layout(shape(sidx_to_gmode_vt))); // Scale that up to cover all of the smem_coords auto layout_VT = tile_to_shape(layout_vt, make_shape(size(cta_v_map)/size<1>(layout_vt), size<1>(layout_vt))); // Flip it and change the domain of the T from logical thr to thr_idx auto layout_TV = make_layout(composition(layout<1>(layout_VT), cta_t_map), layout<0>(layout_VT)); #if 0 print("cta_tiler : "); print(cta_tiler); print("\n"); print("layout_VT : "); print(layout_VT); print("\n"); print("layout_TV : "); print(layout_TV); print("\n"); #endif using T = typename GEngine::value_type; return TiledCopy, decltype(layout_TV), decltype(cta_tiler)>{tma_traits}; } #endif // !defined(__CUDACC_RTC__) } // end namespace detail /** Make a CuTe CTA-collective TiledCopy for a TMA operation. * * @param CopyOp The target copy operation: SM90_TMA_LOAD, SM90_TMA_LOAD_MULTICAST, SM90_TMA_STORE * @param gtensor The GMEM Tensor to be involved in the TMA. * @param slayout The SMEM Layout to be involved in the TMA. * @param cta_tile The CTA-local tile that each CTA will be tiling GMEM with. * This is often the blk_shape that is used to tile the GMEM for CTAs: * local_tile(gtensor, blk_shape, blk_coord) -> CTA-local tile of gtensor * @param cluster_size When using SM90_TMA_LOAD_MULTICAST, this can be a (static) power-of-2 <= 16 * defining the multicast size (used to further partition the SMEM) * Else, static-1 * * This code attempts to maximize the TMA box size. It does this by tracing * the SMEM "vector" -- the inverse of the smem layout -- to find the largest * contiguous array of smem that can be written to/from global memory given * the constraints that the TMA instruction imposes. * * This is accomplished by assigning "basis" strides to the GMEM to track which * modes of SMEM map to which modes of GMEM, then reorder the modes of GMEM according * to the SMEM vector, and then using those GMEM/SMEM modes to fill in the desc. * * Examples: using T = float; T* gptr = nullptr; { // Simple 2D Tensor gtensor = make_tensor(gptr, make_shape(1024, 256), GenRowMajor{}); // K-Major GMEM auto slayout = make_layout(make_shape(_64{}, _32{}), GenRowMajor{}); // K-Major SMEM auto tma = make_tma_copy(SM90_TMA_LOAD{}, gtensor, slayout); } { // GMMA 2D Tensor gtensor = make_tensor(gptr, make_shape(1024, 256)); // MN-Major GMEM auto slayout = tile_to_shape(GMMA::Layout_MN_SW128_Atom{}, make_shape(_128{},_64{})); // MN-Major Swizzled+Tiled 128x64 SMEM auto tma = make_tma_copy(SM90_TMA_LOAD{}, gtensor, slayout); } { // 3D Tensor gtensor = make_tensor(gptr, make_shape(1024, 32, 512), make_stride(64, Int<1>{}, 65536)); // GMEM auto slayout = make_layout(make_shape(_16{}, _8{}, _2{}), make_stride(_16{}, _1{}, _8{})); // SMEM w/ same major-mode auto tma = make_tma_copy(SM90_TMA_LOAD{}, gtensor, slayout); } { // cuTENSOR 4D auto layout = make_shape(make_shape(32,40),make_shape(make_shape(8,8),656)); // GMEM auto cta_tile = make_shape(_128{},make_shape(_32{},_2{})); // GMEM Tiling: // Take 128-elem from m: m0 must divide 128, // m-last may be predicated // Take 32-elem from k0, 2-elem from k1 auto slayout = make_layout(cta_tile); // Col-Major SMEM auto tma = make_tma_copy(SM90_TMA_LOAD{}, gtensor, slayout, cta_tile, Int<1>{}); } * * Check the TMA box size and desc: print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n"); print("TMA desc : "); print(tma.tma_desc_); print("\n"); * * Usage: Tensor mA = tma_a.get_tma_tensor(make_shape(M,N)); // (M,N) TMA coord tensor Tensor gA = local_tile(mA, cta_tile, cta_coord); // (BLK_M,BLK_N) TMA coord tensor for this CTA Tensor sA = make_tensor(make_smem_ptr(sptr), slayout); // (BLK_M,BLK_N) SMEM tensor auto cta_tma = tma.get_slice(cta_idx_in_cluster); // Slice for multicast partitioning Tensor tAgA = cta_tma.partition_S(gA); // Partition for src Tensor tAsA = cta_tma.partition_D(sA); // Partition for dst copy(tma.with(barrier, mcast_mask), tAgA, tAsA); // copy with supporting TMA params */ #if !defined(__CUDACC_RTC__) template CUTE_HOST auto make_tma_copy(CopyOp const& copy_op, Tensor const& gtensor, SLayout const& slayout, CTA_Tile const& cta_tile, Cluster_Size const& cluster_size) { return detail::make_tma_copy_tiled(copy_op, gtensor, slayout, make_layout(cluster_size), make_identity_layout(cta_tile)); } // Explicit defaulting template CUTE_HOST auto make_tma_copy(CopyOp const& copy_op, Tensor const& gtensor, SLayout const& slayout) { return make_tma_copy(copy_op, gtensor, slayout, product_each(shape(slayout)), Int<1>{}); } template CUTE_HOST auto make_tma_copy(CopyOp const& copy_op, Tensor const& gtensor, SLayout const& slayout, Cluster_Size const& cluster_size) { return make_tma_copy(copy_op, gtensor, slayout, product_each(shape(slayout)), cluster_size); } #endif // !defined(__CUDACC_RTC__) } // end namespace cute