/*************************************************************************************************** * Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests that the stream-K scheduler covers the entire problem space. */ #include "cutlass/cluster_launch.hpp" #include "cutlass/kernel_hardware_info.hpp" #include "cutlass/gemm/kernel/sm90_tile_scheduler_stream_k.hpp" #include "cutlass/util/device_memory.h" #include "cutlass/util/reference/device/tensor_fill.h" #include "../../common/cutlass_unit_test.h" // Grids are launched with clusters enabled in these tests, // so the CTK version must support cluster launching. #if defined(CUTLASS_SM90_CLUSTER_LAUNCH_ENABLED) using namespace cute; using ProblemShape_MNKL = Shape; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Kernel for getting each piece of work for a given block from the scheduler and logging /// the K iterations visited by the block. template < class Scheduler, class TileShape, class ClusterShape > __global__ void run_scheduler(int* visit_counters, typename Scheduler::Params params, TileShape tile_shape, ClusterShape cluster_shape, ProblemShape_MNKL problem_shape_mnkl) { Scheduler scheduler{params}; auto work_tile_info = scheduler.get_current_work(); while (work_tile_info.is_valid_tile) { // Increment counters to indicate coverage auto tile_idx = Scheduler::output_tile_index(params, work_tile_info); auto offset = tile_idx * params.k_tiles_per_output_tile_ + work_tile_info.K_idx; for (auto i = 0; i < work_tile_info.k_tile_count; ++i) { // Use atomicAdd because the visit counters are shared by multiple thread blocks. // While having more than one block increment the same counter indicates failure, // we need to ensure that this behavior is captured (by having both increments reflected). atomicAdd(visit_counters + offset + i, 1); } bool continue_current = scheduler.continue_current_work(work_tile_info); if (!continue_current) { scheduler.advance_to_next_work(); work_tile_info = scheduler.get_current_work(); } } } /// Host-side wrapper for launching the kernel to test the scheduler. template < class TileShape, class ClusterShape, uint32_t NumMmaWarpGroups = 2 > bool test_scheduler( ProblemShape_MNKL problem_shape_mnkl, TileShape tile_shape, ClusterShape cluster_shape, int sm_count, int splits=1, bool expect_data_parallel=false) { using Scheduler = cutlass::gemm::kernel::detail::PersistentTileSchedulerSm90StreamK; cutlass::KernelHardwareInfo hw_info{0, sm_count}; auto params = Scheduler::to_underlying_arguments(problem_shape_mnkl, tile_shape, cluster_shape, hw_info, {splits}, nullptr); // If we expect the schedule to be data-parallel only, ensure that no stream-K tiles are launched. if (expect_data_parallel && params.sk_tiles_ != 0) { return false; } // Allocate counters indicating the number of times each k iteration of each output tile has been visited auto [blk_m, blk_n, blk_l] = Scheduler::get_tiled_cta_shape_mnl(problem_shape_mnkl, tile_shape, cluster_shape); auto total_counters = blk_m * blk_n * blk_l * params.k_tiles_per_output_tile_; cutlass::DeviceAllocation visit_counters(total_counters); // Initialize counters to zero cudaError_t err = cudaMemset((void*)visit_counters.get(), 0, sizeof(int) * total_counters); if (err != cudaSuccess) { std::cerr << __FILE__ << ":" << __LINE__ << " cudaMemset failed with error: " << cudaGetErrorString(err) << std::endl; return false; } typename Scheduler::Arguments args{}; // Set up the grid for the problem dim3 grid = Scheduler::get_grid_shape(problem_shape_mnkl, tile_shape, cluster_shape, hw_info, args); // Set up cluster and cluster launch. This is needed even for this simple kernel because // the SM90 scheduler needs to be able to query the CTA id within a cluster, which requires // explicitly launching with clusters. dim3 cluster{ static_cast(cute::get<0>(ClusterShape{})), static_cast(cute::get<1>(ClusterShape{})), static_cast(cute::get<2>(ClusterShape{})) }; cudaLaunchConfig_t launch_config; launch_config.gridDim = grid; launch_config.blockDim = {1, 1, 1}; launch_config.dynamicSmemBytes = 0; launch_config.stream = NULL; cudaLaunchAttribute launch_attribute[1]; launch_attribute[0].id = cudaLaunchAttributeClusterDimension; launch_attribute[0].val.clusterDim.x = cluster.x; launch_attribute[0].val.clusterDim.y = cluster.y; launch_attribute[0].val.clusterDim.z = cluster.z; launch_config.attrs = launch_attribute; launch_config.numAttrs = 1; void const* kernel = (void const*) run_scheduler; int* counters_ptr = visit_counters.get(); void* kernel_params[] = { &counters_ptr, ¶ms, &tile_shape, &cluster_shape, &problem_shape_mnkl }; // Run the scheduler to completion and log visits to each k iteration err = cudaLaunchKernelExC(&launch_config, kernel, kernel_params); if (err != cudaSuccess) { std::cerr << __FILE__ << ":" << __LINE__ << " cudaLaunchKernelExC failed with error: " << cudaGetErrorString(err) << std::endl; return false; } err = cudaDeviceSynchronize(); if (err != cudaSuccess) { std::cerr << __FILE__ << ":" << __LINE__ << " scheduler kernel failed with error: " << cudaGetErrorString(err) << std::endl; return false; } // Copy visit counts back to host and ensure that all entries are ones std::vector host_visit_counts(total_counters); visit_counters.copy_to_host(host_visit_counts.data()); for (size_t i = 0; i < host_visit_counts.size(); ++i) { if (host_visit_counts[i] != 1) { // for (int count : host_visit_counts) { // if (count != 1) { std::cout << "Failed with problem size " << size<0>(problem_shape_mnkl) << "x" << size<1>(problem_shape_mnkl) << "x" << size<2>(problem_shape_mnkl) << "x" << size<3>(problem_shape_mnkl) << " and grid size " << grid.x << "x" << grid.y << "x" << grid.z << " splits=" << params.splits_ << " k_iter=" << params.k_tiles_per_output_tile_ << " big_units=" << params.big_units_ << " sk_tiles=" << params.sk_tiles_ << " sk_units=" << params.sk_units_ << " k_tiles_per_sk_unit=" << params.k_tiles_per_sk_unit_ << std::endl; std::cout << "Error at idx: " << i << ". Got count " << host_visit_counts[i] << std::endl; return false; } } return true; } /// Executes tests of the scheduler with a sweep across problem size K template < class TileShape, class ClusterShape > bool sweep_k( ProblemShape_MNKL problem_shape_mnkl, TileShape tile_shape, ClusterShape cluster_shape, int sm_count, int splits=1, bool expect_data_parallel=false, int k_start=128, int k_stop=16384, int k_step=0) { if (k_step == 0) { k_step = 4 * cute::size<2>(tile_shape); } for (int k = k_start; k <= k_stop; k += k_step) { ProblemShape_MNKL problem{get<0>(problem_shape_mnkl), get<1>(problem_shape_mnkl), k, get<3>(problem_shape_mnkl)}; bool passed = test_scheduler(problem, tile_shape, cluster_shape, sm_count, splits, expect_data_parallel); if (!passed) { return false; } } return true; } /// Executes tests of the scheduler that are expected to result in a data-parallel schedule. /// This function assumes that the problem, tile, and cluster shape, alongside the SM count, /// are such that the problem executes only full waves on the device. template < class TileShape, class ClusterShape > bool test_data_parallel( int blocks_m, int blocks_n, TileShape tile_shape, ClusterShape cluster_shape, int sm_count) { // Since the configuration passed in executes only full waves, increasing // the batch dimension simply results in running more full waves. for (int l = 1; l < 4; ++l) { ProblemShape_MNKL problem_shape{ size<0>(tile_shape) * blocks_m, size<1>(tile_shape) * blocks_n, 1, l}; bool passed = sweep_k(problem_shape, tile_shape, cluster_shape, sm_count, /*splits=*/1, /*expect_data_parallel=*/true); if (!passed) { return false; } } return true; } /// Executes tests of the scheduler on the generic stream-K decomposition. template < class TileShape, class ClusterShape > bool test_stream_k( TileShape tile_shape, ClusterShape cluster_shape, int sm_count) { int tile_m = size<0>(tile_shape); int tile_n = size<1>(tile_shape); for (int m_blocks = 1; m_blocks <= 24; ++m_blocks) { for (int n_blocks = 1; n_blocks <= 24; ++n_blocks) { for (int l = 1; l < 4; ++l) { ProblemShape_MNKL problem{m_blocks * tile_m, n_blocks * tile_n, 1, l}; if (!sweep_k(problem, tile_shape, cluster_shape, sm_count)) { return false; } } } } return true; } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_stream_k_scheduler, 256x128x64_2x1x1) { using TileShape_MNK = Shape<_256,_128,_64>; using ClusterShape_MNK = Shape<_2,_1,_1>; TileShape_MNK tile_shape; ClusterShape_MNK cluster_shape; // Test various data-parallel cases EXPECT_TRUE(test_data_parallel(/*blocks_m=*/ 4, /*blocks_n=*/ 4, tile_shape, cluster_shape, /*sm_count=*/ 16)); EXPECT_TRUE(test_data_parallel(/*blocks_m=*/16, /*blocks_n=*/ 4, tile_shape, cluster_shape, /*sm_count=*/ 64)); EXPECT_TRUE(test_data_parallel(/*blocks_m=*/ 4, /*blocks_n=*/27, tile_shape, cluster_shape, /*sm_count=*/108)); // Test various stream-K cases EXPECT_TRUE(test_stream_k(tile_shape, cluster_shape, /*sm_count=*/ 16)); EXPECT_TRUE(test_stream_k(tile_shape, cluster_shape, /*sm_count=*/ 64)); EXPECT_TRUE(test_stream_k(tile_shape, cluster_shape, /*sm_count=*/108)); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_stream_k_scheduler, 128x128x64_2x1x1) { using TileShape_MNK = Shape<_128,_128,_64>; using ClusterShape_MNK = Shape<_2,_1,_1>; TileShape_MNK tile_shape; ClusterShape_MNK cluster_shape; EXPECT_TRUE(test_scheduler({128, 512, 2048, 1}, tile_shape, cluster_shape, 114)); } #endif // defined(CUTLASS_SM90_CLUSTER_LAUNCH_ENABLED) /////////////////////////////////////////////////////////////////////////////////////////////////